MATERIALS RESEARCH EXPRESS

VOLUME 6, NUMBER 12

18 DECEMBER 2019

V. V. Zalamai 1

A. V. Tiron 1

E. V. Rusu 2

N. N. Syrbu 1,3

1 Technical University of Moldova, 168 Stefan cel Mare Avenue, 2004 Chisinau, Moldova

2 Institute of Electronic Engineering and Nanotechnologies, Academy str 3/3, Chisinau MD-2028, Moldova

3 Author to whom any correspondence should be addressed.

DOI:10.1088/2053-1591/ab5f8a

Birefringence of SnSe single crystals in excitonic

and electronic transitions region

Abstract

Absorption spectra in temperature range 300–10 K were studied. The minimal band gap A_1 (1.091 eV at 300 K) is formed by direct allowed in $E \mid \mid c$ polarization and forbidden in $E \mid \mid a$ polarizations transitions. The next interval B_1 (1.316 eV) is formed by direct transitions allowed in $E \mid \mid a$ polarization and forbidden in $E \mid \mid c$ polarization. Angular dependences of the electron transitions in the band gap minimum were investigated. Spectral dependences of refractive index (n) were calculated from wavelength modulation transmission ($\Delta T/\Delta \lambda$) and reflection ($\Delta R/\Delta \lambda$) spectra in the region of direct electron transitions. The absorption edge shifts to higher energies with temperature decreasing, and temperature coefficient of edge absorption shift (β) is 3.4 × 10₋₃ eV K₋₁.