
V. I. Onoi, L. A. Ursu, On generalization of the notion of Moufang loop to n-ary case, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2019, Number 1, 52-70

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use http://www.mathnet.ru/eng/agreement

Download details:
IP: 109.185.158.253
March 14, 2020, 21:52:13

On generalization of the notion of Moufang loop to n-ary case

V.I. Onoi, L. A. Ursu

Abstract

Using isotopical approach we generalize concept of binary Moufang loop on n-ary $(n>2)$ case. We give two examples of ternary Moufang loop which are not a ternary group.

Mathematics subject classification: MSC 20N05 20N10 20N015. Keywords and phrases: Quasigroup, loop, Moufang loop, n-ary quasigroup, n-ary Moufang loop.

1 Introduction

Previously, let us give basic notions and designations from [2].

1. Given a set Q, let its elements be designated by small latin characters. For short, let $\left\{x_{i}\right\}_{i=m}^{k}$ or $\left\{x_{i}\right\}_{m}^{k}$ denote the sequence $x_{m}, x_{m+1}, \ldots, x_{k}$. We will often use the designation x_{m}^{k} instead of $\left\{x_{i}\right\}_{m}^{k}$ if it is clear which index is being changed. The symbol x_{m}^{k} makes sense if $m \leq k$. If $m=k$, then x_{m}^{m} means simply an element x_{m}. If $m>k$, then by x_{m}^{k} we shall understand empty sequence (empty set). The sequence a, a, \ldots, a (k times) is denoted by ${ }_{a}^{k}$. The symbol ${ }^{0}{ }^{0}$ means empty sequence.

Let Q^{n} be the Cartesian power of the set Q, i.e. Q^{n} consists of all ordered sequences $a_{1}^{n}, a_{i} \in Q(i=1,2, \ldots, n)$. A mapping $A: Q^{n} \rightarrow Q$ is called an n-ary operation, and one number n is called the arity of the operation A. A set Q with n-ary operation A is called an n-groupoid and is denoted by $Q(A)$. If an operation A puts into correspondence an element $b \in Q$ to the sequence $a_{1}^{n} \in Q^{n}$, then we write $A\left(x_{1}^{n}\right)=b$. The operations defined on the set Q are denoted by capital latin characters A, B, C, \ldots or by parenthesis $\left(a_{1}^{n}\right)=b$.

An n-groupoid $Q(A)$ is called an n-quasigroup or n-ary quasigroup if in the equality $A\left(x_{1}^{n}\right)=x_{n+1}$ any n elements of $x_{1}^{n+1} \in Q$ uniquely define the ($n+1$)-th one. This definition is equivalent to the following one: algebra $Q(A)$ with one n-ary operation A, which is uniquely reversible at each place, is called an n-quasigroup [3 , p. 48]. For convenience, the quasigroup operation A itself of n-quasigroup $Q(A)$ as a rule is called a quasigroup too.

If in the n-quasigroup $Q(A)$ there exists at least one element e such that $A\left(\stackrel{i-1}{e}, x,{ }_{e}^{n-i}\right)=x$ for any $x \in Q$ and any $i=1,2, \ldots, n$, then $Q(A)$ is called an n-loop with an identity element e.
© V.I. Onoi, L. A. Ursu, 2019
2. A quasigroup B is called an isotope of a quasigroup A (A and B have equal arity n and are defined on the same set Q) if there exists a sequence $T=\left(\alpha_{1}^{n+1}\right)$ of substitutions of the set Q such that $B\left(x_{1}^{n}\right)=\alpha_{n+1}^{-1} A\left(\left\{\alpha_{i} x_{i}\right\}_{1}^{n}\right)$ for all $x_{1}^{n} \in Q^{n}$.

The denotation is: $B=A^{T}$. The sequence T is called an isotopy.
A substitution α_{i} is called an i-th component of the isotopy $T=\left(\alpha_{i}^{n+1}\right)$.
From $C=B^{T}, B=A^{S} \Rightarrow C=A^{S T}$, where $S T$ is the product of isotopies: $P=S T=\left(\alpha_{1}^{n+1}\right)\left(\beta_{1}^{n+1}\right)=\left(\left\{\alpha_{i} \beta_{i}\right\}_{1}^{n+1}\right)$;

From $B=A^{S} \Rightarrow A=B^{S^{-1}}$. An isomorphism, i.e. an isotopy of the form $\binom{n+1}{\alpha}$, is a particular case of the isotopy. The principal isotopy is another particular case of isotopy: an isotopy of the form $S=\left(\alpha_{1}^{n}, \varepsilon\right)$ is called the principal one, and one quasigroup $B=A^{S}$ is called the principal isotope of the quasigroup A (ε is an identical substitution).

Theorem 1. If a quasigroup B is isotopic to a quasigroup A, then it is isomorphic to some its principal isotope:

$$
B=A^{T}, T=\left(\alpha_{1}^{n+1}\right) \Rightarrow B=\left(A^{S}\right)^{\alpha_{n+1}}
$$

Among the principal isotopes there are $L P$-isotopes that stand out. The notion of n-quasigroup translation is necessary for their definition.

Let us designate the sequence $a_{1}^{n} \in Q^{n}$ by \bar{a}, the sequence $\left\{a_{1}^{i-1}, a_{i+1}^{n}\right\}$ by ${ }_{i}(\bar{a})$. Such a sequence is called i-section of the sequence $\bar{a}=\left\{a_{1}^{n}\right\}$. Let an n-quasigroup A be defined on Q. Then a mapping $L_{i}(\bar{a})$, defined by the equality

$$
L_{i}(\bar{a}) x=A\left(a_{1}^{i-1}, x, a_{i+1}^{n}\right),
$$

is called an i-translation relative to the sequence \bar{a} or translation relative to i section of the sequence \bar{a}. By virtue of the n-quasigroup definition, i-translations are substitutions of the set Q for any $\bar{a} \in Q^{n}$ and for any $i=1,2, \ldots, n$. Notice that $L_{1}(\bar{a}) x=A\left(x, a_{2}^{n}\right), L_{n}(\bar{a}) x=A\left(a_{1}^{n-1}, x\right)$; in the case when $n=2$ we have $\bar{a}=\left\{a_{1}, a_{2}\right\} \in Q^{2}, L_{1}(\bar{a}) x=A\left(x, a_{2}\right)$ is right translation, $L_{2}(\bar{a}) x=A\left(a_{1}, x\right)$ is left translation of the quasigroup A.

Principal isotope $B=A^{T}$ of a quasigroup A, where $T=\left(\alpha_{1}^{n}, \varepsilon\right)$ and $\alpha_{i}=L_{i}^{-1}(\bar{a})$, is called an $L P$-isotope of the quasigroup A.

Theorem 2. Every LP-isotope of a quasigroup is a loop.
Proof. Indeed, let us be given an n-quasigroup $Q(A)$. We consider its $L P$-isotope $B\left(x_{1}^{n}\right)=A^{T}\left(x_{1}^{n}\right)$, where $T=\left(\alpha_{1}^{n}, \varepsilon\right), \bar{a}=a_{1}^{n}$.

Let us show that $e=A\left(a_{1}^{n}\right)$ is an identity element of the quasigroup $Q(B)$. Notice that $L_{i}(\bar{a}) a_{i}=A\left(a_{1}^{n}\right)$. Let $A\left(a_{1}^{n}\right)=e$. Then $\alpha_{i} e=L_{i}^{-1}(\bar{a}) e=a_{i}$. Therefore,

$$
\begin{gathered}
B\left({ }^{i-1}, x,{ }^{n-i} e^{n}\right)=A^{T}\left(e^{i-1}, x,{ }^{n-i}\right)=A\left(\left\{\alpha_{j} e\right\}_{j=1}^{i-1}, \alpha_{i} x,\left\{\alpha_{j} e\right\}_{j=i+1}^{n}\right)= \\
=A\left(a_{1}^{i-1}, \alpha_{i} x, a_{i+1}^{n}\right)=L_{i}(\bar{a})\left(\alpha_{i} x\right)=L_{i}(\bar{a})\left(L_{i}^{-1}(\bar{a}) x\right)=x,
\end{gathered}
$$

i.e., e is the identity element of the loop $Q(B)$.

Theorem 3. If a loop is principally isotopic to an n-quasigroup, then it is LPisotopic to this quasigroup.
Proof. Indeed, let A be an n-quasigroup, $B\left(x_{1}^{n}\right)=A^{T}\left(x_{1}^{n}\right), T=\left(\alpha_{1}^{n}, \varepsilon\right)$ and let $Q(B)$ be a loop with identity element e. Then $x=B\left(e^{i-1}, x,{ }_{e} e^{n-i}\right)=A^{T}\left(e_{e}^{i-1}, x, e^{n-i}\right)=$ $A\left(\left\{\alpha_{j} e\right\}_{j=1}^{i-1}, \alpha_{i} x,\left\{\alpha_{j} e\right\}_{j=i+1}^{n}\right)$.

Let us assume that $\alpha_{i} e=a_{i}, i \in\{1,2, \ldots, n\}, \bar{a}=a_{1}^{n}$. Therefore, $x=$ $A\left(a_{1}^{i-1}, \alpha_{i} x, a_{i+1}^{n}\right)=L_{i}(\bar{a}) \alpha_{i} x$, whence $\alpha_{i}=L_{i}^{-1}(\bar{a})$, hence $B=A^{T}$ is an LP-isotope of the quasigroup A.
3. Let $Q(A)$ be an n-quasigroup. From the definition of translation $L_{i}(\bar{a})$ of the quasigroup $Q(A)$ we have that in this quasigroup the following identity holds:

$$
\begin{equation*}
L_{i}(\bar{a}) x=A\left(a_{1}^{i-1}, x, a_{i+1}^{n}\right), \tag{1}
\end{equation*}
$$

where x runs through all the set $Q, L_{i}(\bar{a})$ is a substitution of the set Q for $\forall \bar{a}=$ $x_{1}^{n} \in Q^{n}$ and for $\forall i=1,2, \ldots, n$.

From the identity (1) it results that with respect to the n-quasigroup $Q(A)$ the following identities hold:

$$
\begin{align*}
L_{i}^{-1}(\bar{a}) A\left(a_{1}^{i-1}, x, a_{i+1}^{n}\right) & =A\left(a_{1}^{i-1}, L_{i}^{-1}(\bar{a}) x, a_{i+1}^{n}\right) ; \tag{2}\\
L_{i}(\bar{a}) A\left(a_{1}^{i-1}, x, a_{i+1} n\right) & =A\left(a^{i-1} L_{i}(\bar{a}) x, a_{i+1}^{n}\right) . \tag{3}
\end{align*}
$$

Indeed, by replacing in the identity (1) $x \rightarrow L_{i}^{-1}(\bar{a}) x$, we get the following identity:

$$
\begin{equation*}
x=A\left(a_{1}^{i-1}, L_{i}^{-1}(\bar{a}) x, a_{i+1}^{n}\right) . \tag{4}
\end{equation*}
$$

On the other hand, applying the substitution $L_{i}^{-1}(\bar{a})$ from left to the identity (1), we get the following identity:

$$
\begin{equation*}
x=L_{i}(\bar{a}) A\left(a_{1}^{i-1}, x, a_{i+1}^{n}\right) . \tag{5}
\end{equation*}
$$

From the identities (5) \wedge (4) it follows the identity (2); by replacing $x \rightarrow L_{i}(\bar{a}) x$ in the identity (2), and then by applying the substitution $L_{i}(\bar{a})$ to the obtained identity, it follows the identity (3).

From (1) by replacing $x \rightarrow L_{i}^{-2}(\bar{a})$, evidently the following identity results:

$$
\begin{equation*}
L_{i}^{-1}(\bar{a}) x=A\left(a_{1}^{i-1}, L_{i}^{-2}(\bar{a}) x, a_{i+1}^{n}\right) . \tag{6}
\end{equation*}
$$

By definition, $L P$-isotope $Q(B)$ of n-quasigroup $Q(A)$ relative to the sequence $\bar{a}=a_{1}^{n} \in Q^{n}$ is a principal isotope of this quasigroup of the form

$$
\begin{equation*}
B\left(x_{1}^{n}\right)=A\left(\left\{L_{i}^{-1}(\bar{a}) x_{i}\right\}_{i=1}^{n}\right) \tag{7}
\end{equation*}
$$

The $L P$-isotope $Q(B)$ of the quasigroup $Q(A)$ is a loop with the identity element $e=A\left(a_{1}^{n}\right)[2$, p. 13].
4. For loops (with binary operation) the notion of an IP-loop (loop with reversibility) is defined: a loop $Q(\cdot)$ is called a $I P$-loop if for any $a, b, \in Q$ the following holds: ${ }^{-1} a(a b)=b,(b a) a^{-1}=b$, where ${ }^{-1} a a=a a^{-1}=1$.

2 Some results

In [3, p. 48] it is noted that the main research object is not IP-loops, but Moufang loops, which is a narrower class. Namely, a loop is called a Moufang loop if all the loops which are isotopic to it are the IP-loops. The following theorem is true: Moufang Theorem: A loop $Q(\cdot)$ is Moufang if and only if the following identity holds:

$$
(x y)(z x)=[x(y z)] x .
$$

Let us note that the Moufang loop is also equivalently defined by one of the following identities:

$$
\begin{gathered}
x(y \cdot x z)=(x y \cdot x) z \\
(z x \cdot y) x=z(x \cdot y x) \quad[1, \mathrm{p} .59] .
\end{gathered}
$$

In [1] the notions of the loop with the property of reversibility (IP-loop) and Moufang loop in the context of more general notion of $I P$-quasigroup are studied in detail. In [2] the generalisations of the notions of $I P$-loop and Moufang loop are also considered within the more general notion of $I P-n$-quasigroup. The notion of $I P$ - n-loop admits the following

Definition 1. An n-loop $Q(A)$ is called an n-loop with the property of reversibility (or IP-n-loop) if there exists the system of substitutions $\nu_{i j}(i, j=1,2, \ldots, n)$ of the set Q (with $\nu_{i j}=\varepsilon$ being the identical substitution) such that the following identities hold:

$$
\begin{equation*}
A\left(\left\{\nu_{i j} x_{j}\right\}_{j=1}^{i-1}, A\left(x_{1}^{n}\right),\left\{\nu_{i j} x_{j}\right\}_{j=i+1}^{n}\right)=x_{i} \tag{8}
\end{equation*}
$$

for any $x_{i} \in Q(i=1,2, \ldots, n)$. The matrix $\left\|\nu_{i j}\right\|$ is called an inversion matrix of $I P$-loop $Q(A)$, and substitutions $\nu_{i j}$ are called inversion substitutions [2, p.66].

Let us extend without changes the definition of the notion of Moufang loop (binary) given in [3, pp. 18] to n-ary case of the loop. Thus, in the set of all $I P$ -n-loops, a narrower class of n-loops Moufang is singled out, which conforms to the following definition:

Definition 2. An n-loop $Q(A)$ is called a Moufang n-loop (or Moufang loop) if all the loops isotopic to it are n-loops with the property of reversibility ($I P$ - n-loops).

The following theorem is true:
Theorem 4. An n-loop $Q(A)$ is a Moufang n-loop if and only if the following condition is met: for any LP-isotope of n-loop $Q(A)$ there exists a system of substitutions $\tilde{\nu}_{i j}(i, j=1,2, \ldots, n)$ of the set Q, with $\tilde{\nu}_{i j}=\varepsilon$, such that the following identities are true:

$$
\begin{equation*}
C\left(\left\{\tilde{\nu}_{i j} x_{j}\right\}_{j=1}^{i-1}, C\left(x_{1}^{n}\right),\left\{\tilde{\nu}_{i j} x_{j}\right\}_{j=i+1}^{n}\right)=x_{i} \tag{9}
\end{equation*}
$$

for any $x_{i} \in Q(i=1,2, \ldots, n)$.

Proof. Necessity. Let $Q(A)$ be a Moufang n-loop. According to Definition 2, all its $L P$-isotopes $Q(C)$ are $I P$ - n-loops. Thus, according to Definition 1, for any $L P$ isotope $Q(C)$ of the loop $Q(A)$ the identities (9) are true.

Sufficiency. Let $Q(A)$ be an n-loop and any its $L P$-isotope $Q(C)$ satisfies identities (9). According to the known theorem: if a loop C is isotopic to an n-loop A, then it is isomorphic to some of its principal isotope:

$$
C=A^{T}, T=\left(\alpha_{1}^{n+1}\right) \Rightarrow C=\left(A^{S}\right)^{\alpha_{n+1}}
$$

this principal isotope A^{S} is a loop. From Theorem 3 the following corollary obviously follows: if a loop C_{1} is principally isotopic to an n-loop A, then it is $L P$-isotopic to the loop A : $C_{1}=A^{S}, S=\left(\beta_{1}^{n}, \varepsilon\right) \Rightarrow \beta_{i}=L_{i}^{-1}(\bar{a})$.

By virtue of these theorems, it follows that any loop $Q(C)$ which is isotopic to an n-loop $Q(A)$ is isomorphic to some $L P$-isotope of the loop $Q(A)$. Since, according to the theorem's condition, all $L P$-isotopes of the loop $Q(A)$ are $I P$-loops, then any loop which is isotopic to n-loop $Q(A)$ is an $I P-n$-loop, i.e. $Q(A)$ is a Moufang n-loop. The theorem is proved.

Let Moufang n-loop $Q(A)$ be set by identities (9). Applying formula (7) to identities (9) we get that identities (9) become as follows:

$$
\begin{equation*}
A\left(\left\{L_{j}^{-1}(\bar{a}) \tilde{\nu}_{i j} x_{j}\right\}_{j=1}^{i-1}, L_{i}^{-1}(\bar{a}) A\left(\left\{L_{j}^{-1}(\bar{a}) x_{j}\right\}_{j=1}^{n}\right),\left\{L_{j}^{-1}(\bar{a}) \tilde{\nu}_{i j} x_{j}\right\}_{j=i+1}^{n}\right)=x_{i} \tag{10}
\end{equation*}
$$

for any $x_{i} \in Q(i=1,2, \ldots, n)$, where $L_{i}(\bar{a})$ is an i-translation relative to any $\bar{a}=a_{1}^{n} \in Q^{n}$.

Let us call identities (10) and the equivalent to them ones as identities of Moufang n-loop $Q(A)$. By replacing $x_{j} \rightarrow L_{j}(\bar{a}) x_{j}(j=1,2, \ldots, n)$ in (10), we get the following identities:

$$
\begin{equation*}
A\left(\left\{L_{j}^{-1}(\bar{a}) \tilde{\nu}_{i j} L_{j}(\bar{a}) x_{j}\right\}_{j=1}^{i-1}, L_{i}^{-1}(\bar{a}) A\left(x_{1}^{n}\right),\left\{L_{j}^{-1}(\bar{a}) \tilde{\nu}_{i j} L_{j}(\bar{a}) x_{j}\right\}_{j=i+1}^{n}\right)=L_{i}(\bar{a}) x_{i} \tag{11}
\end{equation*}
$$

for any $x_{i} \in Q(i=1,2, \ldots, n)$ and $\bar{a}=a_{1}^{n} \in Q^{n}$.
Let a Moufang n-loop be set by identities (11). In particular case when $n=2$, identities (11) are equivalent to the following system of two identities:

$$
\begin{align*}
& A\left(L_{1}^{-1}(\bar{a}) A\left(x_{1}^{2}\right), L_{2}^{-1}(\bar{a}) \tilde{\nu}_{12} L_{2}(\bar{a}) x_{2}\right)=L_{1}(\bar{a}) x_{1}, \\
& A\left(L_{1}^{-1}(\bar{a}) \tilde{\nu}_{21} L_{1}(\bar{a}) x_{1}, L_{2}^{-1}(\bar{a}) A\left(x_{1}^{2}\right)\right)=L_{2}(\bar{a}) x_{2} \tag{12}
\end{align*}
$$

for any $x_{1}, x_{2} \in Q$, any $\bar{a}=\left\{a_{1}, a_{2}\right\} \in Q^{2}$, where ν_{12}, ν_{21} are the inversion substitutions of $I P$-n-loop $Q(B)$ which is $L P$-isotopic to the loop $Q(A)$. By the definition of translation in n-quasigroup $Q(A)$ it follows that in the particular case with $n=2$ the following relations take place:

$$
\begin{aligned}
\bar{a} & \left.=\left\{a_{1}, a_{2}\right\}, L_{1} \bar{a}\right) x=A\left(x, a_{2}\right)-\text { right translation, } \\
L_{2}(\bar{a}) x & =A\left(a_{1}, x\right) \text { is left translation of the quasigroup } Q(A),
\end{aligned}
$$

where x runs through the whole set Q. Let us denote $A=(\cdot)$. Then these relations can be written in the following form:

$$
\begin{equation*}
L_{1}(\bar{a})=R_{a_{2}}, L_{2}(\bar{a})=L_{a_{1}}, \tag{13}
\end{equation*}
$$

from which it results that $L_{1}^{-1}(\bar{a})=R_{a_{2}}^{-1}, L_{2}^{-1}(\bar{a})=L_{a_{1}}^{-1}$.
Then, in view of the relations (13), identities (12) become as follows:

$$
\begin{array}{r}
R_{a_{2}}^{-1}\left(x_{1} \cdot x_{2}\right) \cdot L_{a_{1}}^{-1} \tilde{\nu}_{12} L_{a_{1}} x_{2}=R_{a_{2}} x_{1}, \\
R_{a_{2}}^{-1} \tilde{\nu}_{21} R_{a_{2}} x_{1} \cdot L_{a_{1}}^{-1}\left(x_{1} \cdot x_{2}\right)=L_{a_{1}} x_{2} \tag{14}
\end{array}
$$

for any $x_{1}, x_{2}, a_{1}, a_{2} \in Q$.
Let us consider the second identity from (14). With $x_{2}=L_{x_{1}}^{-1} a_{1}$ it entails the following identity:

$$
\begin{equation*}
R_{a_{2}}^{-1} \tilde{\nu}_{21} R_{a_{2}} x_{1}=a_{1} L_{x_{1}}^{-1} a_{1} \tag{15}
\end{equation*}
$$

By replacing expression $R_{a_{2}}^{-1} \tilde{\nu}_{21} x_{1}$ in (14) by identically equal to it expression from identity (15), we get the following identity:

$$
\begin{equation*}
\left(a_{1} \cdot L_{x_{1}}^{-1} a_{1}\right) \cdot L_{a_{1}}^{-1}\left(x_{1} \cdot x_{2}\right)=a_{1} x_{2} \tag{16}
\end{equation*}
$$

for any $a_{1}, x_{1}, x_{2} \in Q$. So, since the loop $Q(\cdot)$ (binary), i.e. $Q(A)$ set by identities (14), is an IP-loop, then, as it is known, it possesses the following properties:

$$
{ }^{-1} x=x^{-1},(x \cdot y)^{-1}=y^{-1} \cdot x^{-1}, L_{x}^{-1}=L_{x^{-1}}, R_{x}^{-1}=R_{x^{-1}}
$$

where L_{x}, R_{x} respectively are left and right translations of the loop $Q(\cdot)$ relative to an arbitrary element $x \in Q$, and x^{-1} is a right inverse element for $x: x \cdot x^{-1}=1,1$ is an identity element of the loop $Q(\cdot) ;\left(x^{-1}\right)^{-1}=x$. Therefore, identity (16) gets the following form:

$$
\left(a_{1} \cdot x_{1}^{-1} a_{1}\right) \cdot a_{1}^{-1}\left(x_{1} \cdot x_{2}\right)=a_{1} x_{2}
$$

for any $a_{1}, x_{1}, x_{2} \in Q$.
Renaming variables in this identity as follows: $a_{1} \rightarrow x, x_{1} \rightarrow y, x_{2} \rightarrow z$, we get the following identity:

$$
x\left(y^{-1} \cdot x\right) \cdot\left(x^{-1} \cdot y z\right)=x z \Longleftrightarrow x^{-1} \cdot y z=\left(x^{-1} y\right) x^{-1} \cdot x z
$$

Replacing in the last identity $y \rightarrow x \cdot y x=L_{x} R_{x} y$ we get the identity:
$x^{-1}[(x \cdot y x) z]=\left[x^{-1}(x \cdot y x)\right] x^{-1} \cdot x z \Longleftrightarrow x^{-1}[(x \cdot y x) z]=y \cdot x z \Longleftrightarrow(x \cdot y x) z=x(y \cdot x z)$

- the identity of left Bol loop.

And since $Q(\cdot)$ is an $I P$-loop and at the same time it is a left Bol loop, then, by the known theorem, $Q(\cdot)$ is a Moufang loop assignable by the following identity:

$$
x(y \cdot x z)=(x y \cdot x) z \Longleftrightarrow(x y)(z x)=[x(y z)] x
$$

By analogy, the first identity from (14) entails the same identities.
With $n=3$ an operation is called ternary, and identities (10) become identities of ternary Moufang loop (Moufang 3-loop) $Q(A)$ and have the following compact writing:

$$
\begin{equation*}
A\left(\left\{L_{j}^{-1}(\bar{a}) \tilde{\nu}_{i j} x_{j}\right\}_{j=1}^{i-1}, L_{i}^{-1}(\bar{a}) A\left(\left\{L_{j}^{-1}(\bar{a}) x_{j}\right\}_{j=1}^{3}\right),\left\{L_{j}^{-1}(\bar{a}) \tilde{\nu}_{i j} x_{j}\right\}_{j=i+1}^{3}\right)=x_{i} \tag{17}
\end{equation*}
$$

for any $x_{i} \in Q(i=1,2,3)$ and $\forall \bar{a}=a_{1}^{3} \in Q^{3}$, where $\tilde{\nu}_{i 1}, \tilde{\nu}_{i 2}, \tilde{\nu}_{i 3}$ are inversion substitutions of the $I P$ - n-loop $Q(B)$ which is $L P$-isotopic to the loop $Q(A)$, and $L_{i}(\bar{a})$ is an i-translation relative to \bar{a}.

Let us note one of the main properties of Moufang n-loop in the form of the following theorem:

Theorem 5. Any loop which is isotopic to Moufang n-loop is also a Moufang n-loop.

This theorem is proved in the context of broader generalisation of the notion of Moufang loop [2, p. 75].

3 Example of a ternary noncommutative Moufang loop

The following example demonstrates the existence of 3-ary Moufang loops which differ from 3 -groups. Let $K(+, \cdot)$ be an associative (not necessary commutative) ring with unity which has characteristic 3, i.e. there exists such a positive integer n that for every element $x \in K$ the equality $n \cdot x=\underbrace{x+\ldots+x}_{n \text { times }}=0$ holds, with the least such number $p=3$ for which $3 \cdot x=x+x+x=0$ for every $x \in K$, and let $K^{\prime}(\cdot)$ be an abelian subgroup in a multiplicative semigroup $K(\cdot)$ of the ring K, consisting not only from 1 and such that the mapping $x \rightarrow s \cdot x$ is a substitution of the set K for any $s \in K^{\prime}$ with $s^{2}=1$ for $\forall s \in K^{\prime}$ (in particular, $K=Z_{3}$ is a ring of residue classes modulo 3).

Let us consider Cartesian product $Q=K^{\prime} \times K=\left\{\langle s, x\rangle \mid s \in K^{\prime} \wedge x \in K\right\}$ of the sets K^{\prime} and K, and also the Cartesian 3-rd degree $Q^{3}=\left\{\left\langle s_{i}, x_{i}\right\rangle_{1}^{3} \mid s_{i} \in K^{\prime}, x_{i} \in K\right\}$ of the set Q. Let us denote by $\overline{\bar{a}}$ the sequence $\overline{\bar{a}}=\left\langle r_{i}, a_{i}\right\rangle_{i=1}^{3} \in Q^{3}$. Let us define ternary operation

$$
\begin{equation*}
A\left(\left\langle s_{1}, x_{1}\right\rangle,\left\langle s_{2}, x_{2}\right\rangle,\left\langle s_{3}, x_{3}\right\rangle\right)=\left\langle s_{1} s_{2} s_{3}, s_{2} x_{1}+s_{3} x_{2}+s_{1} x_{3}\right) \tag{18}
\end{equation*}
$$

for $\forall s_{1}, s_{2}, s_{3} \in K^{\prime}$ and $\forall x_{1}, x_{2}, x_{3} \in K$ on the set $Q=K^{\prime} \times K$ of ordered pairs of the form $\langle s, x\rangle \in Q$. Let us define the following mapping to this operation:

$$
\nu_{i j}: Q \rightarrow Q, \quad \nu_{i j}\left\langle s_{j}, x_{j}\right\rangle= \begin{cases}\left\langle s_{j},-s_{j} x_{j}\right\rangle & \text { when } j \neq i, \tag{19}\\ \left\langle s_{j}, x_{j}\right\rangle & \text { when } j=i\end{cases}
$$

for $\forall s_{j} \in K^{\prime}, \forall x_{j} \in K(j=1,2,3)$ and for $\forall i=1,2,3$. It is obvious that $\nu_{i j}$ is a substitution of the set $Q=K \times K^{\prime}$.

It is easy to verify that 3 -groupoid $Q(A)$ with operation (18) is a ternary loop (3-loop) with unity $<1,0\rangle$. Let us prove that this $\operatorname{loop} Q(A)$ is a required Moufang 3-loop.

Really, according to the definition of $L P$-isotope of n-quasigroup, for a loop $Q(A)$ defined on the set $Q=K^{\prime} \times K$ by formula (18) and for arbitrary sequence $\overline{\bar{a}}=\left\langle r_{i}, a_{i}\right\rangle_{i=1}^{3} \in Q^{3}$ the specific $L P$-isotope $Q(B)$ of the loop $Q(A)$ is appropriately formed according to the following formula:

$$
\begin{equation*}
B\left(\left\langle s_{i}, x_{i}\right\rangle_{i=1}^{3}\right)=A\left(\left\{L_{i}^{-1}(\overline{\bar{a}})\left\langle s_{i}, x_{i}\right\rangle\right\}_{i=1}^{3}\right) \tag{20}
\end{equation*}
$$

for $\forall s_{i} \in K^{\prime}, \forall x_{i} \in K(i=1,2,3)$ and for arbitrary sequence $\overline{\bar{a}} \in Q^{3}$. Let us fix arbitrary sequence and with this restriction consider the respective $L P$-isotope $Q(B)$ of the loop $Q(A)$ with the operation (18).

From the definition of i-translation of quasigroup $L_{i}(\bar{a})$ it follows that $L_{i}(\overline{\bar{a}})$ is a substitution of the set $Q=K^{\prime} \times K$ for every $i=1,2,3$. Therefore $L_{i}^{-1}(\overline{\bar{a}})\left\langle s_{i}, x_{i}\right\rangle$ is some ordered pair of the form $\langle s, x\rangle$ from $Q=K^{\prime} \times K$, i.e.

$$
\begin{equation*}
L_{i}^{-1}(\overline{\bar{a}})\left\langle s_{i}, x_{i}\right\rangle=\left\langle t_{i}, y_{i}\right\rangle \tag{21}
\end{equation*}
$$

for every $i=1,2,3$. Let us find the explicit form of the pair $\left\langle t_{i}, y_{i}\right\rangle$, expressed through s_{i}, x_{i}. According to the definition of i-translation of quasigroup, the following identities are equivalent:

$$
(21) \Leftrightarrow\left\langle s_{i}, x_{i}\right\rangle=L_{i}(\overline{\bar{a}})\left\langle t_{i}, y_{i}\right\rangle \Leftrightarrow\left\langle s_{i}, x_{i}\right\rangle=A\left((\overline{\bar{a}})_{1}^{i-1},\left\langle t_{i}, y_{i}\right\rangle,(\overline{\bar{a}})_{i+1}^{3}\right)
$$

for every $i=1,2,3$. The last identity is equivalent to the following system of three identities:

$$
\begin{align*}
& \text { When } i=1 \Rightarrow 1^{\circ} .\left\langle s_{1}, x_{1}\right\rangle=A\left(\left\langle t_{1}, y_{1}\right\rangle,\left\langle r_{2}, b_{2}\right\rangle,\left\langle r_{3}, a_{3}\right\rangle\right) \text {; } \\
& \text { when } i=2 \Rightarrow 2^{\circ} .\left\langle s_{2}, x_{2}\right\rangle=A\left(\left\langle r_{1}, a_{1}\right\rangle,\left\langle t_{2}, a_{2}\right\rangle,\left\langle r_{3}, a_{3}\right\rangle\right) \text {; } \tag{22}\\
& \text { when } i=3 \Rightarrow 3^{\circ} .\left\langle s_{3}, x_{3}\right\rangle=A\left(\left\langle r_{1}, a_{1}\right\rangle,\left\langle r_{2}, a_{2}\right\rangle,\left\langle t_{3}, y_{3}\right\rangle\right) \text {. }
\end{align*}
$$

When applying formula (18) to identities (22), these identities become as follows:

$$
\begin{aligned}
1^{\circ} .\left\langle s_{1}, x_{1}\right\rangle & =\left\langle t_{1} r_{2} r_{3}, r_{2} y_{1}+r_{3} a_{2}+t_{1} a_{3}\right\rangle, \\
2^{\circ} .\left\langle s_{2}, x_{2}\right\rangle & =\left\langle r_{1} t_{2} r_{3}, t_{2} a_{1}+r_{3} y_{2}+r_{1} a_{3}\right\rangle, \\
3^{\circ} .\left\langle s_{3}, x_{3}\right\rangle & =\left\langle r_{1} r_{2} t_{3}, r_{2} a_{1}+t_{3} a_{2}+r_{1} y_{3}\right\rangle
\end{aligned}
$$

for $\forall s_{i}, r_{i}, t_{i} \in K^{\prime}$ and $\forall x_{i}, a_{i}, y_{i} \in K(i=1,2,3)$, from which the following equalities result:

$$
\begin{array}{r}
t_{1}=r_{2} r_{3} s_{1}, \quad t_{2}=r_{1} r_{3} s_{2}, \quad t_{3}=r_{1} r_{2} s_{3}, \\
y_{1}=r_{2}\left(x_{1}-r_{3} a_{2}-r_{2} r_{3} s_{1} a_{3}\right), \quad y_{2}=r_{3}\left(x_{2}-r_{1} r_{3} s_{2} a_{1}-r_{1} a_{3}\right), \\
y_{3}=r_{1}\left(x_{3}-r_{2} a_{1}-r_{1} r_{2} s_{3} a_{2}\right) .
\end{array}
$$

Therefore,

$$
\begin{align*}
\left\langle t_{1}, y_{1}\right\rangle & =\left\langle r_{2} r_{3} s_{1}, r_{2}\left(x_{1}-r_{3} a_{2}-r_{2} r_{3} s_{1} a_{3}\right)\right\rangle, \\
\left\langle t_{2}, y_{2}\right\rangle & =\left\langle r_{1} r_{3} s_{2}, r_{3}\left(x_{2}-r_{1} r_{3} s_{2} a_{1}-r_{1} a_{3}\right)\right\rangle, \tag{23}\\
\left\langle t_{3}, y_{3}\right\rangle & =\left\langle r_{1} r_{2} s_{3}, r_{1}\left(x_{3}-r_{2} a_{1}-r_{1} r_{2} s_{3} a_{2}\right)\right\rangle .
\end{align*}
$$

In view of identities (21) and (23) it follows that identity (20) equivalently transforms in the following way:

$$
\begin{array}{rll}
B\left(\left\langle s_{1}, x_{1}\right\rangle,\left\langle s_{2}, x_{2}\right\rangle,\left\langle s_{3}, x_{3}\right\rangle\right) & =A\left(L_{1}^{-1}(\overline{\bar{a}})\left\langle s_{1}, x_{1}\right\rangle, L_{2}^{-1}(\overline{\bar{a}})\left\langle s_{2}, x_{2}\right\rangle, L_{3}^{-1}(\overline{\bar{a}})\left\langle s_{3}, x_{3}\right\rangle\right) \\
\Leftrightarrow B\left(\left\langle s_{1}, x_{1}\right\rangle,\left\langle s_{2}, x_{2}\right\rangle,\left\langle s_{3}, x_{3}\right\rangle\right) & = & A\left(\left\langle r_{2} r_{3} s_{1}, r_{2}\left(x_{1}-r_{3} a_{2}-r_{2} r_{3} s_{1} a_{3}\right)\right\rangle,\right. \tag{24}\\
\left\langle r_{1} r_{3} s_{2}, r_{3}\left(x_{2}-r_{1} r_{3} s_{2} a_{1}-r_{1} a_{3}\right)\right\rangle, & \left.\left\langle r_{1} r_{2} s_{3}, r_{1}\left(x_{3}-r_{2} a_{1}-r_{1} r_{2} s_{3} a_{2}\right)\right\rangle\right) .
\end{array}
$$

Applying formula (18) to the right part of the last identity in (24), we get the following identity:

$$
\begin{aligned}
B\left(\left\langle s_{1}, x_{1}\right\rangle,\left\langle s_{2}, x_{2}\right\rangle,\left\langle s_{3}, x_{3}\right\rangle\right) & =\left\langle r_{2} r_{3} s_{1} \cdot r_{1} r_{3} s_{2} \cdot r_{1} r_{2} s_{3},\right. \\
r_{1} r_{3} s_{2} \cdot r_{2}\left(x_{1}-r_{3} a_{2}-r_{2} r_{3} s_{1} a_{3}\right) & +r_{1} r_{2} s_{3} \cdot r_{3}\left(x_{2}-r_{1} r_{3} s_{2} a_{1}-r_{1} a_{3}\right)+ \\
\left.r_{2} r_{3} s_{1} \cdot r_{1}\left(x_{3}-r_{2} a_{1}-r_{1} r_{2} s_{3} a_{2}\right)\right\rangle &
\end{aligned}
$$

or

$$
\begin{align*}
B\left(\left\langle s_{1}, x_{1}\right\rangle,\left\langle s_{2}, x_{2}\right\rangle,\left\langle s_{3}, x_{3}\right\rangle\right) & =\left\langle s_{1} s_{2} s_{3}, r_{1} r_{2} r_{3} \cdot\left[s_{2}\left(x_{1}-r_{3} a_{2}-r_{2} r_{3} s_{1} a_{3}\right)+\right.\right. \\
s_{3}\left(x_{2}-r_{1} r_{3} s_{2} a_{1}-r_{1} a_{3}\right) & \left.\left.+s_{1}\left(x_{3}-r_{2} a_{1}-r_{1} r_{2} s_{3} a_{2}\right)\right]\right\rangle \tag{25}
\end{align*}
$$

for any $s_{i}, r_{i} \in K^{\prime}, \forall x_{i}, a_{i} \in K(i=1,2,3)$ and for arbitrary fixed sequence $\overline{\bar{a}}=$ $\left\langle r_{i}, a_{i}\right\rangle_{i=1}^{3} \in Q^{3}$, where $Q=K^{\prime} \times K$.

Thus, if a 3-loop $Q(A)$ is defined on the set $Q=K^{\prime} \times K$ by formula (18), then its arbitrary $L P$-isotope $Q(B)$ can be defined by the formula (25). According to the proof of the Theorem 2, this $L P$-isotope $Q(B)$ is a loop with identity element:

$$
e=A\left(\left\langle r_{i}, a_{i}\right\rangle_{i=1}^{3}\right)=\left\langle r_{1} r_{2} r_{3}, r_{2} a_{1}+r_{3} a_{2}+r_{1} a_{3}\right\rangle .
$$

Let us show that for a 3-loop $Q(A)$, defined by formula (18), its $L P$-isotope $Q(B)$ which can be defined by formula (25) is an $I P$-loop.

Really, according to Definition 1, in order for a 3-loop $Q(B)$, defined on the set $Q=K^{\prime} \times K$, to be a $J P$-loop, it is sufficient that the following condition to be met: there exists a system of substitutions $\tilde{\nu}_{i j}(i, j=1,2,3)$ of the set Q, with $\tilde{\nu}_{i j}=\varepsilon$, such that the following identities hold:

$$
\begin{equation*}
B\left(\left\{\tilde{\nu}_{i j}\left\langle s_{j}, x_{j}\right\rangle\right\}_{j=1}^{i-1}, B\left(\left\langle s_{j}, x_{j}\right\rangle_{j=1}^{3}\right),\left\{\tilde{\nu}_{i j}\left\langle s_{j}, x_{j}\right\rangle\right\}_{j=i+1}^{3}\right)=\left\langle s_{i}, x_{i}\right\rangle \tag{26}
\end{equation*}
$$

for $\forall s_{j} \in K^{\prime}, \forall x_{j} \in K$, and for every $i=1,2,3$.
Let us consider mappings:

$$
\tilde{\nu}_{i j}: Q \rightarrow Q, \quad \tilde{\nu}_{i j}\left\langle s_{j}, x_{j}\right\rangle= \begin{cases}\left\langle s_{j},-r_{1} r_{2} r_{3} s_{j} \cdot x_{j}+c_{j}\right\rangle, & \text { when } j \neq i, \tag{27}\\ \left\langle s_{j}, x_{j}\right\rangle, & \text { when } j=i\end{cases}
$$

for $\forall s_{j} \in K^{\prime}, \forall x_{j} \in K(j=1,2,3)$, and for $\forall i=1,2,3$ with fixed arbitrary sequence $\overline{\bar{a}}=\left\langle r_{i}, a_{i}\right\rangle \in Q^{3}$, where c_{j} are some elements from K which are to be determined.

Obviously, this mapping is a substitution of the set $Q=K^{\prime} \times K$.
Let us prove that there exist such elements $c_{j} \in K(j=1,2,3)$ that substitutions (27) satisfy identities (26).

At first, suppose that there already exist such elements $c_{i} \subset Q(i=1,2,3)$ that the substitutions $\tilde{\nu}_{i j}(j=1,2,3)$ of the set Q, defined by the formula (27), satisfy identities (26). Identities (26) are equivalent to the following system of three identities:

$$
\left\{\begin{array}{rr}
\text { When } i=1 \Rightarrow \quad \text { I. } B\left(B\left(\left\langle s_{j}, x_{j}\right\rangle_{j=1}^{3}\right), \tilde{\nu}_{12}\left\langle s_{2}, x_{2}\right\rangle, \tilde{\nu}_{13}\left\langle s_{3}, x_{3}\right\rangle\right)=\left\langle s_{1}, x_{1}\right\rangle, \tag{28}\\
\text { when } i=2 \Rightarrow \quad \text { II. B }\left(\tilde{\nu}_{21}\left\langle s_{1}, x_{1}\right\rangle, B\left(\left\langle s_{j}, x_{j}\right\rangle_{j=1}^{3}\right), \tilde{\nu}_{23}\left\langle s_{3}, x_{3}\right\rangle\right)=\left\langle s_{2}, x_{2}\right\rangle, \\
\text { when } \left.i=3 \Rightarrow \quad \text { III. B(} \tilde{\nu}_{31}\left\langle s_{1}, x_{1}\right\rangle, \tilde{\nu}_{32}\left\langle s_{2}, x_{2}\right\rangle, B\left(\left\langle s_{j}, x_{j}\right\rangle_{j=1}^{3}\right)\right)=\left\langle s_{3}, x_{3}\right\rangle .
\end{array}\right.
$$

Let us denote by F the second component of the pair in the right part of identity (25):

$$
\begin{equation*}
F=r_{1} r_{2} r_{3} \cdot\left[s_{2}\left(x_{1}-r_{3} a_{2}-r_{2} r_{3} s_{1} a_{3}\right)+s_{3}\left(x_{2}-r_{1} r_{3} s_{2} a_{1}-r_{1} a_{3}\right)+s_{1}\left(x_{3}-r_{2} a_{1}-r_{1} r_{2} s_{3} a_{2}\right)\right] . \tag{29}
\end{equation*}
$$

Applying formulae (25), (27), and (29) to the left sides of identities (28), we get the equivalent system of three identities:

$$
\left\{\begin{array}{rr}
\text { I.B }\left(\left\langle s_{1} s_{2} s_{3}, F\right\rangle,\left\langle s_{2},-r_{1} r_{2} r_{3} s_{2} \cdot x_{2}+c_{2}\right\rangle,\left\langle s_{3},-r_{1} r_{2} r_{3} s_{3} \cdot x_{3}+c_{3}\right\rangle\right) & = \tag{30}\\
\text { II.B }\left(\left\langle s_{1},-r_{1} r_{2} r_{3} s_{1} \cdot x_{1}+c_{1}\right\rangle,\left\langle s_{1} s_{2} s_{3}, F\right\rangle,\left\langle s_{3},-r_{1} r_{2} r_{3} s_{3} \cdot x_{3}+c_{3}\right\rangle\right) & \left\langle s_{1}, x_{1}\right\rangle ; \\
= & \left\langle s_{2}, x_{2}\right\rangle ; \\
\text { III.B(〈s,-r}, \\
= & \left.\left\langle s_{1} r_{2} r_{3} s_{1} \cdot x_{1}+c_{1}\right\rangle,\left\langle s_{2},-r_{1} r_{2} r_{3} s_{2} \cdot x_{2}+c_{2}\right\rangle,\left\langle s_{1} s_{2} s_{3}, F\right\rangle\right)=
\end{array}\right.
$$

Applying now the same formula (25) to the left sides of identities (30), but relative to new components of the operation B (i.e. considering new components as variables $S_{1}, X_{1} ; S_{2}, X_{2} ; S_{3}, X_{3}$ respectively), we get the equivalent system of identities:

$$
\left\{\begin{align*}
& I .\left\langle s_{1} s_{2} s_{3} \cdot s_{2} \cdot s_{3}, r_{1} r_{2} r_{3} \cdot\left[s_{2}\left(F-r_{3} a_{2}-r_{2} r_{3} s_{1} s_{2} s_{3} a_{3}\right)+\right.\right. \tag{31}\\
&+s_{3}\left(-r_{1} r_{2} r_{3} s_{2} \cdot x_{2}+c_{2}-r_{1} r_{3} s_{2} a_{1}-r_{1} a_{3}\right)+ \\
&\left.\left.+s_{1} s_{2} s_{3}\left(-r_{1} r_{2} r_{3} s_{3} \cdot x_{3}+c_{3}+c_{1}-r_{3} a_{2}-r_{1} r_{2} s_{3} a_{2}\right)\right]\right\rangle=\left\langle s_{1}, x_{1}\right\rangle, \\
& I I .\left\langle s_{1} \cdot s_{1} s_{2} s_{3} \cdot s_{3}, r_{1} r_{2} r_{3} \cdot\left[s_{1} s_{2} s_{3}\left(-r_{1} r_{2} r_{3} s_{1} \cdot x_{1}-r_{3} a_{2}-r_{2} r_{3} s_{1} a_{3}\right)+\right.\right. \\
&+s_{3}\left(F-r_{1} r_{3} s_{1} s_{2} s_{3} a_{1}-r_{1} a_{3}\right)+ \\
&\left.\left.+s_{1}\left(-r_{1} r_{2} r_{3} s_{3} \cdot x_{3}+c_{3}-r_{2} a_{1}-r_{1} r_{2} s_{3} a_{2}\right)\right]\right\rangle=\left\langle s_{2}, x_{2}\right\rangle, \\
& I I I .\left\langle s_{1} \cdot s_{2} \cdot s_{1} s_{2} s_{3}, r_{1} r_{2} r_{3} \cdot\left[s_{2}\left(-r_{1} r_{2} r_{3} s_{1} \cdot x_{1}+c_{1}-r_{3} a_{2}-r_{2} r_{3} s_{1} a_{3}\right)+\right.\right. \\
&+s_{1} s_{2} s_{3}\left(-r_{1} r_{2} r_{3} s_{2} \cdot x_{2}+c_{2}-r_{1} r_{3} s_{2} a_{1}-r_{1} a_{3}\right)+ \\
&\left.\left.+s_{1}\left(F-r_{2} a_{1}-r_{1} r_{2} s_{1} s_{2} s_{3} a_{2}\right)\right]\right\rangle=\left\langle s_{3}, x_{3}\right\rangle .
\end{align*}\right.
$$

Multiplying from left by $r_{1} r_{2} r_{3} s_{3}, r_{1} r_{2} r_{3} s_{1}, r_{1} r_{2} r_{3} s_{2}$ the second components of the identities $I, I I, I I I$ of the identities system (31) respectively, we get the following system of three identities:

$$
\left\{\begin{array}{c}
I . s_{2} s_{3} \cdot\left(F-r_{3} a_{2}-r_{2} r_{3} s_{1} s_{2} s_{3} a_{3}\right)+ \tag{32}\\
+1 \cdot\left(-r_{1} r_{2} r_{3} s_{2} \cdot x_{2}+c_{2}-r_{1} r_{3} s_{2} a_{1}-r_{1} a_{3}\right)+ \\
+s_{1} s_{2} \cdot\left(-r_{1} r_{2} r_{3} s_{3} \cdot x_{3}+c_{3}-r_{2} a_{1}-r_{1} r_{2} s_{3} a_{2}\right)= \\
I I . s_{2} r_{2} r_{3} s_{3} \cdot x_{1} \cdot\left(-r_{1} r_{2} r_{3} s_{1} \cdot x_{1}+c_{1}-r_{3} a_{2}-r_{2} r_{3} s_{1} a_{3}\right)+ \\
+s_{1} s_{3} \cdot\left(F-r_{1} r_{3} s_{1} s_{2} s_{3} a_{1}-r_{1} a_{3}\right)+ \\
+1 \cdot\left(-r_{1} r_{2} r_{3} s_{3} \cdot x_{3}+c_{3}-r_{2} a_{1}-r_{1} r_{2} s_{3} a_{2}\right)= \\
r_{1} r_{2} r_{3} s_{1} \cdot x_{2} \\
I I I .1 \cdot\left(-r_{1} r_{2} r_{3} s_{1} \cdot x_{1}+c_{1}-r_{3} a_{2}-r_{2} r_{3} s_{1} a_{3}\right)+ \\
s_{1} s_{3} \cdot\left(-r_{1} r_{2} r_{3} s_{2} \cdot x_{2}+c_{2}-r_{1} r_{3} s_{2} a_{1}-r_{1} a_{3}\right)+ \\
s_{1} s_{2} \cdot\left(F-r_{2} a_{1}-r_{1} r_{2} s_{1} s_{2} s_{3} a_{2}\right)= \\
r_{1} r_{2} r_{3} s_{2} \cdot x_{3} .
\end{array}\right.
$$

Substitute for symbol F in all identities (32) its expression from (29). Then, after combining similar terms, as it is easy to verify, we get the following identities:

$$
\left\{\begin{align*}
I .-\left(r_{2}+r_{1} r_{3} s_{1} s_{2} s_{3}+r_{1} r_{3} s_{2}+r_{2} s_{1} s_{2}\right) a_{1}- & \tag{33}\\
-\left(r_{1} r_{2} s_{3}+r_{3} s_{1} s_{2}+r_{3} s_{2} s_{3}+r_{1} r_{2} s_{1} s_{2} s_{3}\right) a_{2}- & \\
-\left(r_{1} s_{1} s_{3}+r_{2} r_{3} s_{2}+r_{2} r_{3} s_{1}+r_{1}\right) a_{3}+c_{2}+s_{1} s_{2} \cdot c_{3}= & 0 \\
I I .-\left(r_{2} s_{1} s_{2}+r_{1} r_{3} s_{3}+r_{1} r_{3} s_{2}+r_{2}\right) a_{1}- & \\
-\left(r_{3} s_{2} s_{3}+r_{1} r_{2} s_{1} s_{2} s_{3}+r_{3}+r_{1} r_{2} s_{3}\right) a_{2}- & \\
-\left(r_{2} r_{3} s_{1} s_{2} s_{3}+r_{1} s_{2} s_{3}+r_{2} r_{3} s_{1}+r_{1} s_{1} s_{3}\right) a_{3}+c_{3}+s_{2} s_{3} \cdot c_{1}= & 0, \\
I I I .-\left(r_{1} r_{3} s_{1} s_{2} s_{3}+r_{2} s_{1} s_{3}+r_{1} r_{3} s_{2}+r_{2} s_{1} s_{2}\right) a_{1}- & \\
-\left(r_{3}+r_{1} r_{2} s_{1}+r_{3} s_{2} s_{3}+r_{1} r_{2} s_{3}\right) a_{2}- & \\
-\left(r_{2} r_{3} s_{1}+r_{1} s_{1} s_{3}+r_{1}+r_{2} r_{3} s_{1} s_{2} s_{3}\right) a_{3}+c_{1}+s_{1} s_{3} \cdot c_{2}= & 0 .
\end{align*}\right.
$$

Let us denote by $-b_{1},-b_{2},-b_{3}$ integer algebraic expressions consisting of all terms of the left sides of the respective identities (33), except those containing certain elements of c_{1}, c_{2}, c_{3}. By implication, the result of all operations implementation in each of these expressions is, respectively, a certain well defined element from a ring K. Therefore, the system of equalities (33) is the following system of linear equations with unknowns c_{1}, c_{2}, c_{3} :

$$
\left\{\begin{array}{l}
c_{2}+s_{1} s_{2} \cdot c_{3}=b_{1}, \tag{34}\\
c_{3}+s_{2} s_{3} \cdot c_{1}=b_{2}, \\
c_{1}+s_{1} s_{3} \cdot c_{2}=b_{3}
\end{array}\right.
$$

with fixed arbitrary $r_{i} \in K^{\prime}, a_{i} \in K(i=1,2,3)$. It is easy to verify that in the ring K of characteristic 3 the system of equations (34) has the following general solution:

$$
\left[\begin{array}{rrr}
c_{1} & = & s_{1} s_{3} b_{1}-s_{2} s_{3} b_{2}-b_{3}, \tag{35}\\
c_{2} & = & -b_{1}+s_{1} s_{2} b_{2}-s_{1} s_{3} b_{3}, \\
c_{3} & = & -s_{1} s_{2} b_{1}-b_{2}+s_{2} s_{3} b_{3} .
\end{array}\right.
$$

It is easy to see that all the process of transition from identities (26) to the system of identities (33) is reversible, i.e. (33) $\Leftrightarrow(26)$.

Thus, there really exist such elements $c_{1}, c_{2}, c_{3} \in K$ which can be defined by formulae (35) and satisfy identities (33) as well as identities (26), with elements $c_{j}(j=1,2,3)$ from formula (27) being just these elements $c_{j}(j=1,2,3)$, which can be defined by formulae (35).

By this, we have proved that for loop $Q(A)$, defined on the set $Q=K^{\prime} \times K$ by formula (18) and with fixed arbitrary sequence $\overline{\bar{a}}=\left\langle r_{i}, a_{i}\right\rangle_{i=1}^{3} \in Q^{3}$, for its $L P$ isotope $Q(B)$ there exists a system of substitutions $\tilde{\nu}_{i j}(i, j=1,2,3)$ of the set Q, which can be defined by the formula (27) and satisfy identities (26).

Therefore, by Definition 1, this $L P$-isotope $Q(B)$ is a $I P$-loop. So, since $L P$ isotope $Q(B)$ of 3-loop $Q(A)$ is already considered with fixed arbitrary sequence $\overline{\bar{a}} \in Q^{3}$, then $Q(B)$ is any $L P$-isotope of the loop $Q(A)$, being an $I P$-loop. Then, by Theorem 1, loop $Q(A)$ with operation defined on the set $Q=K^{\prime} \times K$ by formula (18) is a ternary Moufang loop. This loop is noncommutative and is not a 3 -group.

Indeed, the following inequality takes place for operation (18):

$$
A\left(\left\langle s_{1}, x_{1}\right\rangle,\left\langle s_{2}, x_{2}\right\rangle,\left\langle s_{3}, x_{3}\right\rangle\right) \neq A\left(\left\langle s_{2}, x_{2}\right\rangle,\left\langle s_{1}, x_{1}\right\rangle,\left\langle s_{3}, x_{3}\right\rangle\right),
$$

i.e. $Q(A)$ is noncommutative. The notion of 3 -group for quasigroup $Q(A)$ on the set $Q=K^{\prime} \times K$ is defined by the following identities:

$$
\begin{aligned}
& A\left(A\left(\left\langle s_{1}, x_{1}\right\rangle,\left\langle s_{2}, x_{2}\right\rangle,\left\langle s_{3}, x_{3}\right\rangle\right),\left\langle s_{4}, x_{4}\right\rangle,\left\langle s_{5}, x_{5}\right\rangle\right)= \\
= & A\left(\left\langle s_{1}, x_{1}\right\rangle, A\left(\left\langle s_{2}, x_{2}\right\rangle,\left\langle s_{3}, x_{3}\right\rangle,\left\langle s_{4}, x_{4}\right\rangle\right),\left\langle s_{5}, x_{5}\right\rangle\right)= \\
= & A\left(\left\langle s_{1}, x_{1}\right\rangle,\left\langle s_{2}, x_{2}\right\rangle, A\left(\left\langle s_{3}, x_{3}\right\rangle,\left\langle s_{4}, x_{4}\right\rangle,\left\langle s_{5}, x_{5}\right\rangle\right)\right) .
\end{aligned}
$$

For Moufang 3 -loop, defined by formula (18), these identities are not met for all $s_{i} \in K^{\prime}, x_{i} \in K(i=1,2,3)$. For example, with $x_{2}=x_{3}=x_{4}=x_{5}=0, x_{1} \neq 0$,
$s_{3} \neq 1$, as it can be verified, not all of these identities are met, i.e. $Q(A)$ is not a 3 -group. It can be considered that this Moufang 3 -loop is constructed with the help of the initial ring $K=Z_{3}$.

So, a ternary noncommutative Moufang loop which is not a 3 -group is constructed.

4 Example of a ternary commutative Moufang loop different from 3-ary group

In [4, p. 42] a method for the construction of complete ring R_{2} of matrices of order n over arbitrary ring R is given. Let us apply this method in the following particular case.

Let Z_{2} be a ring of residue classes modulo 2 . Operations of addition and multiplication of the ring Z_{2} are:

$+$	$\overline{0}$	$\overline{1}$		$\overline{0}$	$\overline{1}$
0	0	$\overline{1}$	$\overline{0}$	$\overline{0}$	0
$\overline{1}$	$\overline{1}$	$\overline{0}$	$\overline{1}$	$\overline{0}$	$\overline{1}$

Let us consider set M of all possible upper triangular square matrices of order 4 of the following form :

$$
x=\left(\begin{array}{cccc}
\bar{x}_{11} & \overline{0} & \bar{x}_{13} & \bar{x}_{14} \\
\overline{0} & \bar{x}_{11} & \overline{0} & \bar{x}_{24} \\
\overline{0} & \overline{0} & \bar{x}_{11} & \overline{0} \\
\overline{0} & \overline{0} & \overline{0} & \bar{x}_{11}
\end{array}\right)
$$

with elements from Z_{2}, where $\bar{x}_{i i}=\bar{x}_{11}$ for all $i=1,2,3,4$ and $\bar{x}_{11}, \bar{x}_{13}, \bar{x}_{14}, \bar{x}_{24}$ are any elements from Z_{2}, the rest of the elements are zeroes $\overline{0}$. When defining by usual way addition and multiplication for them, we get, as it is easy to verify, associative (since Z_{2} is associative), but noncommutative ring $M(+, \cdot)$ with identity element.

Zero matrix $0=0_{4}=\left(\begin{array}{cccc}\overline{0} & \overline{0} & \overline{0} & \overline{0} \\ \overline{0} & \overline{0} & \overline{0} & \overline{0} \\ \overline{0} & \overline{0} & \overline{0} & \overline{0} \\ \overline{0} & \overline{0} & \overline{0} & \overline{0}\end{array}\right)$, consisting of zeroes $\overline{0}$, serves as a zero element of this ring, and identity (unit) matrix $E_{4}=\left(\begin{array}{cccc}\overline{1} & \overline{0} & \overline{0} & \overline{0} \\ \overline{0} & \overline{1} & \overline{0} & \overline{0} \\ \overline{0} & \overline{0} & \overline{1} & \overline{0} \\ \overline{0} & \overline{0} & \overline{0} & \overline{1}\end{array}\right)$ plays the role
of the identity element 1 . Since the initial ring Z_{2} has characteristic 2 , then the ring M, evidently, has also characteristic 2, i.e., $2 x=x+x=0$ for $\forall x \in M$. The subset $M^{\prime}=\{1, b, c, d\} \subset M$, where $1=E_{4}$ is the identity element of the ring M,

$$
b=\left(\begin{array}{cccc}
\overline{1} & \overline{0} & \overline{1} & \overline{1} \\
\overline{0} & \overline{1} & \overline{0} & \overline{1} \\
\overline{0} & \overline{0} & \overline{1} & \overline{0} \\
\overline{0} & \overline{0} & \overline{0} & \overline{1}
\end{array}\right), c=\left(\begin{array}{cccc}
\overline{1} & \overline{0} & \overline{0} & \overline{1} \\
\overline{0} & \overline{1} & \overline{0} & \overline{0} \\
\overline{0} & \overline{0} & \overline{1} & \overline{0} \\
\overline{0} & \overline{0} & \overline{0} & \overline{1}
\end{array}\right), d=\left(\begin{array}{cccc}
\overline{1} & \overline{0} & \overline{1} & \overline{0} \\
\overline{0} & \overline{1} & \overline{0} & \overline{1} \\
\overline{0} & \overline{0} & \overline{1} & \overline{0} \\
\overline{0} & \overline{0} & \overline{0} & \overline{1}
\end{array}\right)
$$

($\overline{0}$ is zero element, $\overline{1}$ is identity element of the ring Z_{2}) relative to matrices multiplication, i.e., $M^{\prime}(\cdot)$, as it is easy to verify, is an abelian subgroup in $M^{*}(\cdot)$ (where $M^{*}=M \backslash\{0\}$), and such that mapping $x \rightarrow s \cdot x$ is a substitution of the set M with any $s \in M^{\prime}$, and $s^{2}=1$ for $\forall s \in M^{\prime}$. The order of the group M^{\prime} is equal to 4. Let us define the following ternary operation on the set $Q=M^{\prime} \times M$ of ordered pairs of the form $\langle s, x\rangle \in Q$.
$A\left(\left\langle s_{1}, x_{1}\right\rangle,\left\langle s_{2}, x_{2}\right\rangle,\left\langle s_{3}, x_{3}\right\rangle\right)=\left\langle s_{1} s_{2} s_{3}, s_{2} s_{3} \cdot x_{1}+s_{1} s_{3} \cdot x_{2}+s_{1} s_{2} \cdot x_{3}+\varphi\left(s_{1}, s_{2}, s_{3}\right)\right\rangle$
for $\forall s_{1}, s_{2}, s_{3} \in M^{\prime}, \forall x_{1}, x_{2}, x_{3} \in M$, where φ is the 3 -ary function on M^{\prime} with the value in M, which is defined by the following formula:

$$
\varphi\left(s_{1}, s_{2}, s_{3}\right)=\left\{\begin{aligned}
s_{1} s_{2} s_{3}+l, & \text { where } l \text { is any fixed element from } M^{\prime} \\
& \text { if the components } s_{1}, s_{2}, s_{3} \text { are pairwise different } \\
& \left(\text { i.e. } s_{1} \neq s_{2}, s_{1} \neq s_{3}, s_{2} \neq s_{3}\right), \\
0 & \text { in other cases } \\
& \text { (i.e., if not all of } s_{1}, s_{2}, s_{3} \text { are pairwise different). }
\end{aligned}\right.
$$

It is easy to verify, that the 3 -groupoid $Q(A)$ with operation (36) is a 3-loop with identity element $\langle 1,0\rangle$, where 0 is zero element, 1 is identity element of the ring M.

Let us prove that this loop $Q(A)$ is a commutative Moufang loop.
Really, as we have already showed, the $L P$-isotope of 3-loop $Q(A)$ is defined by formula (20). From the definition of i-translation of the quasigroup it follows that $L_{i}^{-1}(\overline{\bar{a}})\left\langle s_{i}, x_{i}\right\rangle$ is an ordered pair of the form $\langle s, x\rangle$ from $Q=M^{\prime} \times M$, i.e., equality (21) takes place. Then identities (22) are equivalent.

Applying formula (36) to identities (22), the last become as follows:

$$
\begin{aligned}
1^{\circ} \cdot\left\langle s_{1}, x_{1}\right\rangle & =\left\langle t_{1} r_{2} r_{3}, r_{2} r_{3} \cdot y_{1}+t_{1} r_{3} \cdot a_{2}+t_{1} r_{2} \cdot a_{3}+\varphi\left(t_{1}, r_{2}, r_{3}\right)\right\rangle, \\
2^{\circ} \cdot\left\langle s_{2}, x_{2}\right\rangle & =\left\langle r_{1} t_{2} r_{3}, t_{2} r_{3} \cdot a_{1}+r_{1} r_{3} \cdot y_{2}+r_{1} t_{2} \cdot a_{3}+\varphi\left(r_{1}, t_{2}, r_{3}\right)\right\rangle, \\
3^{\circ} \cdot\left\langle s_{3}, x_{3}\right\rangle & =\left\langle r_{1} r_{2} t_{3}, r_{2} t_{3} \cdot a_{1}+r_{1} t_{3} \cdot a_{2}+r_{1} r_{2} \cdot y_{3}+\varphi\left(r_{1}, r_{2}, t_{3}\right)\right\rangle
\end{aligned}
$$

for $\forall s_{i}, r_{i}, t_{i} \in M^{\prime}$ and $\forall a_{i}, y_{i} \in M(i=1,2,3)$, where from the following equalities result: $t_{1}=r_{2} r_{3} s_{1}, t_{2}=r_{1} r_{3} s_{2}, t_{3}=r_{1} r_{2} s_{3}$,

$$
\begin{aligned}
& y_{1}=r_{2} r_{3} \cdot\left(x_{1}-r_{2} s_{1} \cdot a_{2}-r_{3} s_{1} \cdot a_{3}-\varphi\left(r_{2} r_{3} s_{1}, r_{2}, r_{3}\right)\right), \\
& y_{2}=r_{1} r_{3} \cdot\left(x_{2}-r_{1} s_{2} \cdot a_{1}-r_{3} s_{2} \cdot a_{3}-\varphi\left(r_{1}, r_{1} r_{3} s_{2}, r_{3}\right)\right), \\
& y_{3}=r_{1} r_{2} \cdot\left(x_{3}-r_{1} s_{3} \cdot a_{1}-r_{2} s_{3} \cdot a_{2}-\varphi\left(r_{1}, r_{2}, r_{1} r_{2} s_{3}\right)\right) .
\end{aligned}
$$

And, since the ring M has characteristic 2, i.e. $-x=x$ for $\forall x \in M$, then the following identities result:

$$
\left\langle t_{1}, y_{1}\right\rangle=\left\langle r_{2} r_{3} s_{1}, r_{2} r_{3} \cdot\left(x_{1}+r_{2} s_{1} \cdot a_{2}+r_{3} s_{1} \cdot a_{3}+\varphi\left(r_{2} r_{3} s_{1}, r_{2}, r_{3}\right)\right)\right\rangle
$$

$$
\begin{align*}
\left\langle t_{2}, y_{2}\right\rangle & =\left\langle r_{1} r_{3} s_{2}, r_{1} r_{3} \cdot\left(x_{2}+r_{1} s_{2} \cdot a_{1}+r_{3} s_{2} \cdot a_{3}+\varphi\left(r_{1}, r_{1} r_{3} s_{2}, r_{3}\right)\right)\right\rangle \tag{37}\\
\left\langle t_{3}, y_{3}\right\rangle & =\left\langle r_{1} r_{2} s_{3}, r_{1} r_{2} \cdot\left(x_{3}+r_{1} s_{3} \cdot a_{1}+r_{2} s_{3} \cdot a_{3}+\varphi\left(r_{1}, r_{2}, r_{1} r_{2} s_{3}\right)\right)\right\rangle
\end{align*}
$$

In view of identities $(21) \wedge(37)$ it follows that in the current case identity (20) equivalently transforms in the following way:

$$
\begin{gathered}
B\left(\left\langle s_{1}, x_{1}\right\rangle,\left\langle s_{2}, x_{2}\right\rangle,\left\langle s_{3}, x_{3}\right\rangle\right)=A\left(L_{1}^{-1}(\overline{\bar{a}})\left\langle s_{1}, x_{1}\right\rangle, L_{2}^{-1}(\overline{\bar{a}})\left\langle s_{2}, x_{2}\right\rangle, L_{3}^{-1}(\overline{\bar{a}})\left\langle s_{3}, x_{3}\right\rangle\right) \Longleftrightarrow \\
B\left(\left\langle s_{1}, x_{1}\right\rangle,\left\langle s_{2}, x_{2}\right\rangle,\left\langle s_{3}, x_{3}\right\rangle\right)=A\left(\left\langle r_{2} r_{3} s_{1}, r_{2} r_{3} \cdot\left(x_{1}+r_{2} s_{1} \cdot a_{2}+r_{3} s_{1} \cdot a_{3}+\varphi\left(r_{2} r_{3} s_{1}, r_{2}, r_{3}\right)\right)\right\rangle,\right. \\
\\
\left\langle r_{1} r_{3} s_{2}, r_{1} r_{3} \cdot\left(x_{2}+r_{1} s_{2} \cdot a_{1}+r_{3} s_{2} \cdot a_{3}+\varphi\left(r_{1}, r_{1} r_{3} s_{2}, r_{3}\right)\right)\right\rangle \\
\\
\left.\left\langle r_{1} r_{2} s_{3}, r_{1} r_{2} \cdot\left(x_{3}+r_{1} s_{3} \cdot a_{1}+r_{2} s_{3} \cdot a_{2}+\varphi\left(r_{1}, r_{2}, r_{1} r_{2} s_{3}\right)\right)\right\rangle\right)
\end{gathered}
$$

Applying formula (36) to the right side of the last identity, we get the following identity:

$$
\begin{array}{r}
B\left(\left\langle s_{1}, x_{1}\right\rangle,\left\langle s_{2}, x_{2}\right\rangle,\left\langle s_{3}, x_{3}\right\rangle\right) \\
= \\
\left\langle s_{1} s_{2} s_{3}, s_{2} s_{3} \cdot\left(x_{1}+r_{2} s_{1} \cdot a_{2}+r_{3} s_{1} \cdot a_{3}+\varphi\left(r_{2} r_{3} s_{1}, r_{2}, r_{3}\right)\right)\right. \tag{38}\\
+s_{1} s_{3} \cdot\left(x_{2}+r_{1} s_{2} \cdot a_{1}+r_{3} s_{2} \cdot a_{3}+\varphi\left(r_{1}, r_{1} r_{3} s_{2}, r_{3}\right)\right) \\
+ \\
+s_{1} s_{2} \cdot\left(x_{3}+r_{1} s_{3} \cdot a_{1}+r_{2} s_{3} \cdot a_{2}+\varphi\left(r_{1}, r_{2}, r_{1} r_{2} s_{3}\right)\right) \\
\left.\varphi\left(r_{2} r_{3} s_{1}, r_{1} r_{3} s_{2}, r_{1} r_{2} s_{3}\right)\right\rangle .
\end{array}
$$

Thus, if a 3-loop $Q(A)$ is defined on the set $Q=M^{\prime} \times M$ by formula (36), then its arbitrary $L P$-isotope $Q(B)$ can be defined by formula (38).

Let us demonstrate that for 3-loop $Q(A)$ defined by formula (36) its $L P$-isotope $Q(B)$, that can be defined by formula (38), is a $I P$-loop. To that end, let us consider the same identities (26) relative to the loop $Q(B)$, defined on the set $Q=M^{\prime} \times M$.

$$
B\left(\left\{\tilde{\nu}_{i j}\left\langle s_{j}, x_{j}\right\rangle\right\}_{j=1}^{i-1}, B\left(\left\langle s_{j}, x_{j}\right\rangle_{j=1}^{3}\right),\left\{\tilde{\nu}_{i j}\left\langle s_{j}, x_{j}\right\rangle\right\}_{j=i+1}^{3}\right)=\left\langle s_{i}, x_{i}\right\rangle
$$

for $\forall s_{i} \in M^{\prime}, \forall x_{i} \in M$ and for every $i=1,2,3$.
Let us define substitutions $\nu_{i j}(i, j=1,2,3)$ of the set Q for these identities by the following equalities:

$$
\tilde{\nu}_{i j}\left\langle s_{j}, x_{j}\right\rangle=\left\{\begin{align*}
\left\langle s_{j}, x_{j}+c_{j}\right\rangle & \text { if } j \neq i \tag{39}\\
\left\langle s_{j}, x_{j}\right\rangle & \text { if } j=i
\end{align*}\right.
$$

for $\forall s_{j} \in M^{\prime}, \forall x_{j} \in M(j=1,2,3)$ and for $\forall i=1,2,3$ with fixed arbitrary sequence $\overline{\bar{a}}=\left\langle r_{i}, a_{i}\right\rangle \in Q^{3}$, where $\overline{\overline{c_{j}}}(j=1,2,3)$ are some elements of the set M, which are to be determined.

Let us demonstrate that there exist such elements $c_{j}(j=1,2,3)$ of the set M that, relative to the loop $Q(B)$, substitutions (39) defined by formula (38) meet identities (26).

Let us at first suppose that there already exist such elements $c_{i j}(i, j=1,2,3)$ that the substitutions $\tilde{\nu}_{i j}(i, j=1,2,3)$ of the set Q, defined by formulae (39), meet
identities (26). As we have already demonstrated, identities (26) are equivalent to the system of three identities (28).

$$
\left\{\begin{aligned}
& I . B\left(B\left(\left\langle s_{j}, x_{j}\right\rangle_{j=1}^{3}\right), \tilde{\nu}_{12}\left\langle s_{2}, x_{2}\right\rangle, \tilde{\nu}_{13}\left\langle s_{3}, x_{3}\right\rangle\right)=\left\langle s_{1}, x_{1}\right\rangle, \\
& I I . B\left(\tilde{\nu}_{21}\left\langle s_{1}, x_{1}\right\rangle, B\left(\left\langle s_{j}, x_{j}\right\rangle_{j=1}^{3}\right), \tilde{\nu}_{23}\left\langle s_{3}, x_{3}\right\rangle\right)=\left\langle s_{2}, x_{2}\right\rangle, \\
& \text { III. } B\left(\tilde{\nu}_{31}\left\langle s_{1}, x_{1}\right\rangle, \tilde{\nu}_{32}\left\langle s_{2}, x_{2}\right\rangle, B\left(\left\langle s_{j}, x_{j}\right\rangle_{j=1}^{3}\right)\right)=\left\langle s_{3}, x_{3}\right\rangle .
\end{aligned}\right.
$$

Let us denote the second component of the right side of formula (38) by Φ :

$$
\begin{array}{rr}
\Phi= & s_{2} s_{3} \cdot\left(x_{1}+r_{2} s_{1} \cdot a_{2}+r_{3} s_{1} \cdot a_{3}+\varphi\left(r_{2} r_{3} s_{1}, r_{2}, r_{3}\right)\right)+ \\
+ & s_{1} s_{3} \cdot\left(x_{2}+r_{1} s_{2} \cdot a_{1}+r_{3} s_{2} \cdot a_{3}+\varphi\left(r_{1}, r_{1} r_{3} s_{2}, r_{3}\right)\right)+ \\
+ & s_{1} s_{2} \cdot\left(x_{3}+r_{1} s_{3} \cdot a_{1}+r_{2} s_{3} \cdot a_{2}+\varphi\left(r_{1}, r_{2}, r_{1} r_{2} s_{3}\right)\right)+ \tag{40}\\
+ & \varphi\left(r_{2} r_{3} s_{1}, r_{1} r_{3} s_{2}, r_{1} r_{2} s_{3}\right)
\end{array}
$$

Applying formulae (38) and (40) to the left sides of identities (28), we get that identities (28) are equivalent to the following system of identities:

$$
\left\{\begin{align*}
\text { I. } B\left(\left\langle s_{1} s_{2} s_{3}, \Phi\right\rangle,\left\langle s_{2}, x_{2}+c_{2}\right\rangle,\left\langle s_{3}, x_{3}+c_{3}\right\rangle\right)= & \left\langle s_{1}, x_{1}\right\rangle, \tag{41}\\
\text { II. B(} \left.\left\langle s_{1}, x_{1}+c_{1}\right\rangle, B\left(\left\langle s_{1} s_{2} s_{3}, \Phi\right\rangle\right),\left\langle s_{3}, x_{3}+c_{3}\right\rangle\right)= & \left\langle s_{2}, x_{2}\right\rangle, \\
\text { III. B(} B\left(\left\langle s_{1}, x_{1}+c_{1}\right\rangle,\left\langle s_{2}, x_{2}+c_{2}\right\rangle,\left\langle s_{1} s_{2} s_{3}, \Phi\right\rangle\right)= & \left\langle s_{3}, x_{3}\right\rangle .
\end{align*}\right.
$$

Applying now the same formula (38) to the left sides of identities (41), but relative to new components of the operation B, we get the following equivalent system of three identities:

In view of properties of the ring M and its subgroup $M^{\prime}(\cdot)$ and equality (40), as it is easy to verify, the system of identities (42), after combining similar terms in them, turns into the following system of three identities:

$$
\left\{\begin{array}{rr}
I . s_{2} s_{3} \cdot\left[s_{2} s_{3} \cdot \varphi\left(r_{2} r_{3} s_{1}, r_{2}, r_{3}\right)+\right. & s_{1} s_{3} \cdot \varphi\left(r_{1}, r_{1} r_{3} s_{2}, r_{3}\right)+ \tag{43}\\
+s_{1} s_{2} \cdot \varphi\left(r_{1}, r_{2}, r_{1} r_{2} s_{3}\right)+ & \left.\varphi\left(r_{2} r_{3} s_{1}, r_{1} r_{3} s_{2}, r_{1} r_{2} s_{3}\right)\right]+ \\
+s_{2} s_{3} \cdot \varphi\left(r_{2} r_{3} s_{1} s_{2} s_{3}, r_{2}, r_{3}\right)+ & s_{1} s_{2} \cdot \varphi\left(r_{1}, r_{1} r_{3} s_{2}, r_{3}\right)+ \\
+s_{1} s_{3} \cdot \varphi\left(r_{1}, r_{2}, r_{1} r_{2}\right)+ & \varphi\left(r_{2} r_{3} s_{1} s_{2} s_{3}, r_{1} r_{3} s_{2}, r_{1} r_{2} s_{3}\right)+ \\
+ & s_{1} s_{2} \cdot c_{2}+s_{1} s_{3} \cdot c_{3}=0, \\
I I . s_{1} s_{2} \cdot \varphi\left(r_{2} r_{3} s_{1}, r_{2}, r_{3}\right)+ & s_{1} s_{3} \cdot\left[s_{2} s_{3} \cdot \varphi\left(r_{2} r_{3} s_{1}, r_{2}, r_{3}\right)+\right. \\
+s_{1} s_{3} \cdot \varphi\left(r_{1}, r_{1} r_{3} s_{2}, r_{3}\right)+ & s_{1} s_{2} \cdot \varphi\left(r_{1}, r_{2}, r_{1} r_{2} s_{3}\right)+ \\
\left.+\varphi\left(r_{2} r_{3} s_{1}, r_{1} r_{3} s_{2}, r_{1} r_{2} s_{3}\right)\right]+ & s_{1} s_{3} \cdot \varphi\left(r_{1}, r_{1} r_{3} s_{1} s_{2} s_{3}, r_{3}\right)+ \\
+s_{2} s_{3} \cdot \varphi\left(r_{1}, r_{2} r_{2} s_{3}\right)+ & \varphi\left(r_{2} r_{3} s_{1}, r_{1} r_{3} s_{1} s_{2} s_{3}, r_{1} r_{2} s_{3}\right)+ \\
+ & s_{1} s_{2} \cdot c_{1}+s_{2} s_{3} \cdot c_{3}=0 \\
I I I . s_{1} s_{3} \cdot \varphi\left(r_{2} r_{3} s_{1}, r_{2}, r_{3}\right)+ & s_{2} s_{3} \cdot \varphi\left(r_{1}, r_{1} r_{3} s_{2}, r_{3}\right)+ \\
+s_{1} s_{2} \cdot\left[s_{2} s_{3} \cdot \varphi\left(r_{2} r_{3} s_{1}, r_{2}, r_{3}\right)+\right. & s_{1} s_{3} \cdot \varphi\left(r_{1}, r_{1} r_{3} s_{2}, r_{3}\right)+ \\
+s_{1} s_{2} \cdot \varphi\left(r_{1}, r_{2}, r_{1} r_{2} s_{3}\right)+ & \left.\varphi\left(r_{2} r_{3} s_{1}, r_{1} r_{3} s_{2}, r_{1} r_{2} s_{3}\right)\right]+ \\
+s_{1} s_{2} \cdot \varphi\left(r_{1}, r_{2}, r_{1} r_{2} s_{1} s_{2} s_{3}\right)+ & \varphi\left(r_{2} r_{3} s_{1}, r_{1} r_{3} s_{2}, r_{1} r_{2} s_{1} s_{2} s_{3}\right)+ \\
s_{1} s_{3} \cdot c_{1}+s_{2} s_{3} \cdot c_{3}=0 .
\end{array}\right.
$$

After opening parentheses and in view of properties of the ring M and its subgroup M^{\prime}, the system of identities (43) becomes as follows:

$$
\left\{\begin{array}{rr}
I . \varphi\left(r_{2} r_{3} s_{1}, r_{2}, r_{3}\right)+ & s_{2} s_{3} \cdot \varphi\left(r_{2} r_{3} s_{1}, r_{1} r_{3} s_{2}, r_{1} r_{2} s_{3}\right)+ \tag{44}\\
+s_{2} s_{3} \cdot \varphi\left(r_{2} r_{3} s_{1} s_{2} s_{3}, r_{2}, r_{3}\right)+ & \varphi\left(r_{2} r_{3} s_{1} s_{2} s_{3}, r_{1} r_{3} s_{2}, r_{1} r_{2} s_{3}\right)+ \\
+s_{1} s_{2} \cdot c_{2}+s_{1} s_{3} \cdot c_{3}= & 0, \\
I I . \varphi\left(r_{1}, r_{1} r_{3} s_{2}, r_{3}\right)+ & s_{1} s_{3} \cdot \varphi\left(r_{2} r_{3} s_{1}, r_{1} r_{3} s_{2}, r_{1} r_{2} s_{3}\right)+ \\
+s_{1} s_{3} \cdot \varphi\left(r_{1}, r_{1} r_{3} s_{1} s_{2} s_{3}, r_{3}\right)+ & \varphi\left(r_{2} r_{3} s_{1}, r_{1} r_{3} s_{1} s_{2} s_{3}, r_{1} r_{2} s_{3}\right)+ \\
s_{1} s_{2} \cdot c_{1}+s_{2} s_{3} \cdot c_{3}= & 0, \\
I I I . \varphi\left(r_{1}, r_{2}, r_{1} r_{2} s_{3}\right)+ & s_{1} s_{2} \cdot \varphi\left(r_{2} r_{3} s_{1}, r_{1} r_{3} s_{2}, r_{1} r_{2} s_{3}\right)+ \\
+s_{1} s_{2} \cdot \varphi\left(r_{1}, r_{2}, r_{1} r_{2} s_{1} s_{2} s_{3}\right)+ & \varphi\left(r_{2} r_{3} s_{1}, r_{1} r_{3} s_{2}, r_{1} r_{2} s_{1} s_{2} s_{3}\right)+ \\
+s_{1} s_{3} \cdot c_{1}+s_{2} s_{3} \cdot c_{3}= & 0 .
\end{array}\right.
$$

In identities (44) we formally truncate all those terms containing function φ for which not all their components are pairwise different, since the value of these terms is equal to 0 , and that is why they do not affect the identities implementing. For each of the remaining terms, containing function φ, its components are pairwise different. Therefore, in view of formula (36) and properties of the ring M and its
subgroup M^{\prime}, the identities system (44) becomes as follows:

$$
\left\{\begin{array}{rr}
I \cdot s_{1}+l+s_{2} s_{3} \cdot\left(s_{1} s_{2} s_{3}+l\right)+ & s_{2} s_{3} \cdot\left(s_{1} s_{2} s_{3}+l\right)+ \tag{45}\\
+s_{1}+l+s_{1} s_{2} \cdot c_{2}+s_{1} s_{3} \cdot c_{3}= & 0, \\
I I \cdot s_{2}+l+s_{1} s_{3} \cdot\left(s_{1} s_{2} s_{3}+l\right)+ & s_{1} s_{3} \cdot\left(s_{1} s_{2} s_{3}+l\right)+ \\
+s_{2}+l+s_{1} s_{2} \cdot c_{1}+s_{2} s_{3} \cdot c_{3}= & 0 \\
I I I . s_{3}+l+s_{1} s_{2} \cdot\left(s_{1} s_{2} s_{3}+l\right)+ & s_{1} s_{2} \cdot\left(s_{1} s_{2} s_{3}+l\right)+ \\
+s_{3}+l+s_{1} s_{3} \cdot c_{1}+s_{2} s_{3} \cdot c_{2}= & 0
\end{array}\right.
$$

for $\forall s_{1}, s_{2}, s_{3} \in M^{\prime}$ and fixed $l \in M^{\prime}$.
It is easy to see that the system of equalities (45) represents the following system of linear homogeneous equations relative to the unknowns c_{1}, c_{2}, c_{3} :

$$
\left\{\begin{array} { l }
{ s _ { 1 } s _ { 2 } \cdot c _ { 2 } + s _ { 1 } s _ { 3 } \cdot c _ { 3 } = 0 , } \tag{46}\\
{ s _ { 1 } s _ { 2 } \cdot c _ { 1 } + s _ { 2 } s _ { 3 } \cdot c _ { 3 } = 0 } \\
{ s _ { 1 } s _ { 3 } \cdot c _ { 1 } + s _ { 2 } s _ { 3 } \cdot c _ { 2 } = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
s_{2} c_{2}+s_{3} c_{3}=0, \\
s_{1} c_{1}+s_{3} c_{3}=0 \\
s_{1} c_{1}+s_{2} c_{2}=0
\end{array}\right.\right.
$$

In this, it is easy to verify that in this ring M with characteristic 2 the system of equations (46) has the following general solution:

$$
\begin{equation*}
c_{1}=s_{1} x, \quad c_{2}=s_{2} x, \quad c_{3}=s_{3} x, \tag{47}
\end{equation*}
$$

where x is an arbitrary element from M.
It is easy to see that all the process of transition from identities (26) to the system of equations (46) is reversible, i.e. (46) $\Leftrightarrow(26)$. In this, each nonzero particular solution (47) of the system of equations (46) gives some system of substitutions (39) of the set M which really satisfy identities (26).

Then, according to Definition 1, the loop $Q(B)$ is a $J P$-loop. Since $L P$-isotope $Q(B)$ of the loop $Q(A)$ is considered with fixed arbitrary sequence $\overline{\bar{a}}=\left\langle r_{i}, a_{i}\right\rangle \in Q$, then it follows that $Q(B)$ is any $L P$-isotope of the loop $Q(A)$, being just $J P$-loop.

Therefore, by Theorem 1, the loop $Q(A)$, defined on the set $Q=M^{\prime} \times M$ by formula (36), is a ternary Moufang loop.

It is easy to verify that this loop $Q(A)$ is commutative. On the other hand, it can be easily shown, that for loop $Q(A)$ with operation (36) to be 3 -group it is necessary that the following identities to be satisfied:

$$
\begin{align*}
& s_{4} s_{5} \cdot \varphi\left(s_{1}, s_{2}, s_{3}\right)+\varphi\left(s_{1} s_{2} s_{3}, s_{4}, s_{5}\right)= \\
& s_{1} s_{5} \cdot \varphi\left(s_{2}, s_{3}, s_{4}\right)+\varphi\left(s_{1}, s_{2} s_{3} s_{4}, s_{5}\right)= \tag{48}\\
& s_{1} s_{2} \cdot \varphi\left(s_{3}, s_{4}, s_{5}\right)+\varphi\left(s_{1}, s_{2}, s_{3} s_{4} s_{5}\right)
\end{align*}
$$

for each $s_{1}, s_{2}, s_{3}, s_{4}, s_{5} \in M^{\prime}$.
But, for the loop $Q(A)$, defined by formula (36), identities (48) are not satisfied for all $s_{i} \in M^{\prime}(i=\overline{1,5})$. Thus, according to formula (36), for elements $s_{i} \in$ $M^{\prime}(i=\overline{1,5})$ such that s_{1}, s_{2}, s_{3} are pairwise different and $s_{1} \neq 1, s_{2} \neq 1, s_{3} \neq 1$, but $s_{4}=s_{5}=1$, identities (48) reduce to the following identities:

$$
\varphi\left(s_{1}, s_{2}, s_{3}\right)=s_{1} \cdot \varphi\left(s_{2}, s_{3}, 1\right)+\varphi\left(s_{1}, s_{2} s_{3}, 1\right)=\varphi\left(s_{1}, s_{2}, s_{3}\right) .
$$

Since in the subgroup $M^{\prime} \subset M$ of order 4 product of any two nonunitary elements is equal to the third nonunitary element of this subgroup, then in this case, $s_{2} s_{3}=s_{1}$. Therefore, the previous identities reduce to the identity:

$$
\varphi\left(s_{1}, s_{2}, s_{3}\right)=s_{1} \cdot \varphi\left(s_{2}, s_{3}, 1\right)
$$

or

$$
s_{1} s_{2} s_{3}+l=s_{1} \cdot\left(s_{2} s_{3}+l\right)
$$

wherefrom the following identity results:

$$
l=s_{1} \cdot l
$$

for $\forall s_{1} \in M^{\prime} \backslash 1$ and with the fixed $l \in M^{\prime}$.
The last identity evidently is not satisfied for all $s_{1} \in M^{\prime}$. Thus, for 3-loop $Q(A)$, defined by formula (36), identity (48), generally speaking, is not satisfied, i.e., 3-loop $Q(A)$ is not a 3-group. So, ternary commutative Moufang loop, different from 3 -group, is constructed.

Acknowledgement. The authors thank Referee that paid their attention on works $[5,6]$. In this papers geometrical, "heap" approach is used to define ternary Moufang loops.

References

[1] Belousov V. D. Foundations of the theory of quasigroups and loops. Nauka, Moscow, 1967 (in Russian).
[2] Belousov V. D. n-ary quasigroups. Ştiinţa, Chisinau, 1972 (in Russian).
[3] Kurosh A. G. General algebra. Lectures during academic year 1969-1970. Nauka, Moscow, 1974 (in Russian).
[4] Kurosh A. G. Lectures on general algebra. Nauka, Moscow, 1973 (in Russian).
[5] Bertram Wolfgang, Kinyon Michael. Torsors and ternary Moufang loops arising in projective geometry. In: Makhlouf A., Paal E., Silvestrov S., Stolin A. (eds), Algebra, Geometry and Mathematical Physics. Springer Proceedings in Mathematics \& Statistics, vol 85. Springer, Berlin, Heidelberg, p. 343-360.
[6] Bertram Wolfgang, Kinyon Michael Torsors and ternary Moufang loops arising in projective geometry. arXiv:1206.2222, June 2012.

V.I. Onoi

Received July 31, 2018
Institute of Mathematics and Computer Science
str. Academiei 5, MD-2028, Chisinau
Moldova
E-mail: vscerb@gmail.com
L. A. URsu

Moldova State Technical University
Bul. Ştefan cel Mare şi Sfint 168, MD-2004, Chişinău
Moldova
E-mail: matematica@mail.utm.md

