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Abstract. We report examples of obtaining the bistability effect in 

mechanics and the experimental demonstration of this effect. We propose to use the 

graphical method of solving physics problems. The method explains qualitatively  

the theoretical results. We investigate the influence of different parameters on 

bistability properties. Finally, the experiment shows a clear evidence of bistability 

in a mechanical system.  
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1. INTRODUCTION 

It is well known that in case when the output parameter of a device is 

multivalued function of the input parameter, this device can operate in 

bistability mode. In this case the system can be in two stable equilibrium states, 

separated from each other by an unstable equilibrium state. Often bistability is 

followed by a hysteresis loop. This means that the transition of the system from 

one state to another takes place on one way, and the transition to the initial state 

takes place on another way. The bistability effect is well-known in optics 

(optical bistability) [1, 2], magnetism (magnetic bistability) [3], electricity 

(bistable circuits) [4], etc. In most cases the nature of this effect is quantum and 

its explanation goes far beyond the limits of the high school curriculum. In [5, 6] 

some examples of bistability in mechanics were presented. Obtaining the 

hysteresis loop is explained by relatively simple reasoning, not exceeding the 

limits of the school curriculum or the first year of university. In this paper we 

present some more examples in which the effect of bistability manifests itself in 

the processes of mechanics and we show the experimental proof of obtaining 

effect by one example. 
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2. THEORETICAL RESULTS  

2.1. ROTATING THIN RUBBER RING 

Let us consider a thin rubber ring with mass m and radius R0 (see Fig. 1). The 
description of figures are in the text. The coefficient of elasticity of rubber is k. The 
ring starts to rotate in the horizontal plane around its axis with the angular velocity 
ω. It is necessary to find the new radius R of the ring. 

 
Fig. 1 – The scheme of rotating of thin ring. 

A resultant centrifugal force Fr and two elastic forces Fel act on one half of 
the ring from the other half (see Fig. 2). According to Newton's first law 

 2 el rF F . (1) 

To obtain the force Fr, we divide the ring into very small elements of length 
dl and mass dm. A centrifugal force dF acts on each element of the ring. We can 
say that the ring is in a radial force field. 

 
Fig. 2 – Decomposition of forces.  

The force dF can be decomposed into two components d xF  and d yF . The 
resultant force than act on the whole ring is written as follows  
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 d d .r x yF F F    (2) 

The sum of the components d yF  acting on all elements of a half-ring is equal 

to zero. This means that d 0yF   and using (2) we obtain 

 2 2d d cos d cos d cosr xF F F m R l R            , (3) 

where  = m/2R is the linear density of the ring material, and d dl R  . In what 
follows, we introduce the last expressions in (3): 
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On the other hand, the elastic force has the value 

    0 02 2 2elF kx k R R k R R       . (5) 

Finally, inserting expressions (4) and (5) into (1), we obtain the required 
formula for R  
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Let's analyze the above formula in detail. From expression (6) we observe 
that the obtained result is valid only for 2

0 4 /k m    . For 0   the ring 
will expand to infinity (we consider rubber absolutely elastic). For 0   solution 
(6) does not make any sense. On the other hand, for a better understanding of these 
results, we represent graphically the dependences of the forces from expressions 
(4) and (5) on the axis r (see Fig. 3).  

We observe that, in case of 0   for any r R , rF  is greater than elF  and 
the ring will expand. For the case of r R  these two forces are equal and the ring 
will be in a stable equilibrium, since for any r R , el rF F . When ω increases, 
the radius of ring R becomes higher. Thus, One can see in Fig. 3 that for any 

0   the dependencies  elF r and  rF r  don’t have any points of intersection. 
This means that for 0  the ring will be expanded to infinity. 
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Fig. 3 – Schematic graphical solutions of equation (6).  

Next, applying the proposed graphical solution method to obtain other 
interesting results. To do this, we slightly change the conditions of the previous 
problem. We consider a rigid disc of radius 0R  and a rigid ring of radius 1R , which 
limits the expansion of the rubber ring. Since the radius of the free rubber ring is 
smaller than that of the disc, the rubber ring shrinks in diameter and fits on the disc 
(see Fig. 4). Considering that elastic coefficient k is the same, and in the equilibrium 
position the ring is extended, the dependence of force F on the radius r in this case 
will have the form represented in Fig. 5. 

 
Fig. 4 – Scheme of a rigid disc and a rigid ring that limits the expansion of the rubber ring.    

One can see that, in Fig. 5 that, for 3   the lines  elF r , and  rF r  have 
no points of intersection and el rF F  for any r.  

 
Fig. 5 – Graphical solution method applied to scheme shown in Fig. 4. 
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Thus, for such values of ω ( 3  ) the ring will not expand. However, for 

1 3     the ring will have a point of unstable equilibrium.  Let us explain the 
reason of instability. In the case when 2  , el rF F  for 1r R  and el rF F  for 

1r R . But for 2   the ring cannot extend by itself to the radius 1R , i.e. only 
for 1   the ring will expand indefinitely. 

To conclude, when we start to rotate the system, the ring keeps invariant its 
radius until 1  . For 1  the ring it should expand indefinitely, but its expansion 
is limited by the rigid ring. Thus, the expansion will stop for 1r R . From the state 
with radius 1R  the ring can return to the state with radius 0R  only for 2  . For 

1   the ring will jump from the state with radius 0R  to the state with radius 1R , 
and it returns to the initial state in the case when 2   ( 2 1  ). Figure 6 shows the 
dependence of the radius of the ring R on the angular velocity of the disk. As a result, 
we obtained a hysteresis loop specific to the phenomenon of bistability. 

 
Fig. 6 – Bistability for system shown in Fig. 4.  

2.2. CHARGED BALLS FIXED TO THE SPRING 

In what follows, we consider two identical small balls fixed to the ends of a 
spring of length l, and elasticity coefficient k (see Fig. 7). The balls are charged 
with charge q equal in value and of opposite in sign. The question is the following, 
how much will the spring compress when they set free?   

 
Fig. 7 – Setup of small balls fixed to the ends of a spring.  

The elastic force of the spring acts on a ball 



Article no. 908 V. Chistol et al. 6 

 1F kx , (7) 

and the Coulomb force has the following absolute value  
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The balls are in equilibrium if these two forces are equal. We equate the 
expressions on the right sides of formulas (7) and (8) and obtain  
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or final formula  
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We obtained an cubic equation, which has three solutions. The question is 
the following, can the balls to have three equilibrium positions i.e. three real 
solutions? Equation (9) cannot be solved analytically (at least, within the limits of 
the school curriculum or first university year program), but it can be solved 
graphically. Additionally, from the graphs we can distinguish how many solutions 
are obtained from (9).  

Figure 8 shows the graphs obtained with help of expressions (7) and (8). 
Blue line 1 represents the dependence of the elasticity force (7), and red curves 2 of 
the Coulomb force (8) on extension x, respectively.  

 
Fig. 8 – Schematic solutions of equations (7) and (8).  
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One can see that, the solution x3 cannot has any physical sense in the 
condition of our problem, since in this position the compression of the spring is 
always greater than its length l. However, the solution x3 can has a physical 
meaning only in the case when the charges of the balls have the same sign. The 
other two solutions x1 and x2 have the physical meaning. Initially, for x = 0, the 
Coulomb force is greater than the elastic force and the spring will compress to the 
equilibrium position x = x1. For a compression greater than x1 the elastic force 
becomes greater than the Coulomb force and the spring returns to the equilibrium 
state. Thus, in the position x = x1 the spring is in a state of stable equilibrium. 
Compressing the spring further, we reach the other equilibrium position x = x2. For 

2x x  the spring suddenly compresses to a position determined by the dimensions 
of the spring. So, in position x2 the spring is in an unstable state of equilibrium. 
Solving the problem graphically, we can determine the limit values of the elasticity 
coefficient or the ball charges for which the problem still has solutions. 

In what follows, let us investigate the influence of varying the charges of 
balls on features of system shown in Fig. 7. When we increase the charges of balls, 
the curves 2 from Fig. 9 moves up and the equilibrium positions x1 and x2 approach 
each other. Let us look into details. As shown in Fig. 9 for a certain value of the 
ball charge q = q0 the equilibrium positions merge into one there is only one 
solution x = x0. By further increasing the charges of balls, the Coulomb force will 
always be greater than the elastic force and the spring will not have any 
equilibrium state. For q > q0 the spring will compress to the position x = x4 
determined by the dimensions of the spring. By decreasing the charges on the balls, 
they remain in the same position until a value the charges q = q2. For q = q2 the 
balance of the charge becomes unstable and it jumps to the stable equilibrium 
position x = x5. 

 
Fig. 9 – The influence of variation of the charges of balls on features of system shown in Fig. 7.   

The dependence of spring compression on ball charge is shown in Fig. 10. 
One can observe that, in this case we also obtain a hysteresis loop specific to the 
phenomenon of bistability. 
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Fig. 10 – Bistability of setup shown in Fig. 7.  

2.3. ROTATING DISK WITH A BODY FIXED TO A SPRING 

A similar to bistability effect is obtained also in the following example. We 
consider a disk that can rotate with an angular velocity ω (see Fig. 11). One end of 
a spring is fixed to the disc and other one to a small body of mass m. The spring 
has a length l0 and the body is placed at distance x0 from axis of the disc. The 
spring expands and body is fixed at distance x1 from the axis of disc, so that its 
movement is limited by limiters 1 and 2. The coefficient of elasticity of the spring 
is k. Let us calculate angular velocity ω of the disk when the body has to be at 
distance x1 ≥ x ≤ x2. 

 
Fig. 11 – Schematic view of disk that can rotate with an angular velocity.  

Two forces act on the body (apart from the reaction forces of the limiters) 

  1 0F k x x  , (10) 

 2
2F m x  . (11) 



9 Bistability effects in mechanics Article no. 908 

By equalizing these two forces, we obtain the relation for the distance x  

 0
2

kxx
m k
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. (12) 

From (12) we observe that the obtained result is valid only for 0 .k m    
Figure 12 shows the dependences F1 (x) and F2 (x).   

 
Fig. 12 – Dependence of forces F1 (elastic) and F2 (centrifugal) on distance x.  

F2 is calculated for different angular velocity ω. 

Figure 12 shows that for any angular velocity smaller than ω2 the force 
F2 > F1, and the reaction force of the limiter 1 keeps the body at rest at the 
distance r1. On the other hand for ω = ω2 the system moves to metastable state, 
i.e. the spring begins to expand and the body moves away to distance x = x2. 
When increasing the angular velocity ω, limiter 2 keeps the body at this distance. 
By decreasing the angular velocity ω of the disc, the body will be kept at this 
distance up to the velocity ω1 < ω2. For ω = ω1 the body moves (by jumping) in 
the initial position x1. A clear evidence of bistability is obtained similar to that of 
Fig. 6. 

3. EXPERIMENTAL CONFIRMATION 

Finally we experimentally verified the achievement of the bistability effect 
in the case similar to that presented in the example from Section 2.3. In our 
experiment, on a disk was fixed a small body in elastic wire attached by a red LED 
(see Fig. 13). The body can move along the radius of the disc and its movement is 
limited by limiters 1 and 2. In the initial position the elastic is extended and the 
body is in position 1. The experiment was filmed and placed on YouTube [7]. 
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Fig. 13 – Experimental setup.  

From video one can see that, by increasing the angular velocity of the disc, the 
body remains in the position 1. At the angular velocity ω1 approximately equal to 
9.8 Hz, the body moves to position 2. By decreasing the angular velocity of the 
disc, the body remains in the same position. At a angular velocity ω2 approximately 
equal to 7.2 Hz the body returns to its initial position. Thus, the body describes the 
hysteresis loop shown in Fig. 6. 

4. CONCLUSIONS  

In conclusion, we mention that the graphical method presented in this paper 
is a very important tool for understanding the effect of bistability in mechanics. 
The results presented can be used to significantly improve the understanding of this 
phenomenon by students in schools and first year of University, and for explaining 
the physical processes that take place. We denote that in the case of non-linear 
dependencies between physical quantities, we have to take into account that the 
effect of bistability can occur. Thus, to avoid mistakes in solving physics problems 
it is necessary to consider this phenomenon. We believe that our work provides a 
good basis for future, more detailed studies of bistability in systems by graphical 
method. The presented results may be used to significantly improve the understanding 
of phenomenon of bistability.  
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