S1-1.6 Phase Transition in Laser Irradiated TiO₂ Thin Films

I. Lungu¹, L. Ghimpu², T. Potlog¹, A. Medvids³ and C. Moise⁴

ICNBME - 2021

¹Research and Innovation Institute, Moldova State University, Chisinau, Republic of Moldova

²Institute of Electronic Engineering and Nanotechnologies, Academy of Sciences of Moldova, Chisinau, Republic of Moldova

³Department of Semiconductor Physics, Institute of Technical Physics, Riga Technical University, Riga, Latvia ⁴Center for Surface Science and Nanotechnology, University Politehnica of Bucharest, Bucharest, Romania

In this study, the laser processing of thermally annealed TiO₂ thin films at 420 °C in hydrogen atmosphere, utilizing an pulsed fourth-harmonic generation Nd: YAG laser employing different laser intensities in the atmosphere at room temperature, has been reported. Further, the surface morphology and crystalline structure have been investigated by means of atomic force microscopy [AFM], X-ray diffraction [XRD], Raman analysis. The AFM images obtained show that the film's surface changes as the effect of the laser processes. Moreover, XRD and Raman analysis of the TiO₂ thin films indicate at the threshold laser intensity, $I_{th} = 66 \text{ MW/cm}^2$ of the fourth-harmonic generation Nd: YAG laser phase transition from atanase-rutile to a crystalline 100% rutile.