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Abstract. A D-structure on a ring A with identity is a family of self-
mappings indexed by the elements of a monoid G and subject to a long list of
rather natural conditions. The mappings are used to define a generalization of
the monoid algebra A[G]. We consider two of the simpler types of D-structure.
The first is based on a homomorphism from G to End(A) and leads to a skew
monoid ring. We also explore connections between these D-structures and normal-
izing and subnormalizing extensions. The second type of D-structure considered
is built from an endomorphism of A. We use D-structures of this type to charac-
terize rings which can be graded by a cyclic group of order 2.

1. Introduction

A system called a D-structure in [6] and introduced in [5] consists of
a ring A with an identity 1, a monoid G with identity e and mappings
σx,y : A → A satisfying the following condition for all x, y, z ∈ G and a, b ∈ A.

Condition (A).
(0) For each x ∈ G and a ∈ R, we have σx,y(a) = 0 for almost all y ∈ G.
(i) Each σx,y is an additive endomorphism.
(ii) σx,y(ab) =

∑

z∈G σx,z(a)σz,y(b).
(iii) σxy,z =

∑

uv=z σx,u ◦ σy,v.
(iv1) σx,y(1) = 0 if x �= y;
(iv2) σx,x(1) = 1;
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(iv3) σe,x(a) = 0 if x �= e;
(iv4) σe,e(a) = a.
For brevity a D-structure described in the notation of Condition (A) will

be referred to as “a D-structure σ” or by cognate phrases.
In [5] a sort of “skew” or “twisted” monoid ring A��G,σ� associated with

A and G was constructed by means of the mappings σx,y. (The connection
with the structures usually called skew monoid rings will be elucidated in
the next section.) The multiplication in A�G,σ� is given by the rule

(a · x)(b · y) = a
∑

z∈G

σx,z(b) · zy

and distributivity. Examples include group rings, skew polynomial rings and
the Weyl algebras. There are also connections with gradings of rings.

We shall examine two relatively simple types of D-structures: those
defined by a monoid homomorphism from G to the monoid of (ring-) en-
domorphisms of A and those defined by an endomorphism f of A using
the fact that if δ(a) = a− f(a) for all a ∈ A then δ is an (f, id)-derivation,
i.e. δ(ab) = δ(a)b+ f(a)δ(b) for all a, b ∈ A. For the former we establish
connections with normalizing extensions [3] and subnormalizing extensions
(also known as triangular extensions [7], [11]). We obtain criteria for Z2-
gradability by means of the latter.

2. D-structures, skew monoid rings and normalizing extensions

For a ring R with identity 1 and a monoid G with identity e let

F : G → End(A)

be a monoid homomorphism, where End(A) is the monoid of ring endo-
morphisms with respect to composition. We obtain a D-structure σF by
defining σF

x,y to be F (x) if x = y and the zero map otherwise. (This is eas-
ily verified; cf. [5, Example 1].) This is the situation where G acts on A by
endomorphisms.

Proposition 2.1. If σ is defined by a monoid homomorphism F , then
in A�G,σ� the multiplication is given by the formula

(a · x)(b · y) = aσ(x)(b) · xy.

If σ is defined by an endomorphism F then Proposition 2.1 says that
A�G,σ� (= A�G,σF �) is the skew monoid ring of G over A defined by F in
the sense of [1]. In particular when G is the free monoid generated by an
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element X we get the skew polynomial ring A[X,σ] whose multiplication is
given by

Xa = F (a)X

and distributivity. Every skew polynomial ring skewed by an endomorphism
only (i.e. not involving any kind of derivation) arises in this way. (See,
e.g. [4].) For related comments on skew polynomial rings involving some
sort of derivation, see [5, Example 2 and Section 6] and [6, Section 3]. It
is reasonable to also employ the term skew polynomial ring for a monoid
ring defined by a monoid homomorphism F : G �→ End(R) when G is a free
monoid or a free commutative monoid, and we shall do so shortly.

Example 2.2. Let G be the infinite cyclic monoid {x0(= e), x, x2, . . .,
xn, . . .}, R a ring with identity and R[t] the usual polynomial ring. We define

F : G → End(R[t])

by setting F (xn)(p(t)) = p(t2
n

) for each n. Then each F (xn) is a ring endo-
morphism and F is a monoid homomorphism. Let

σF
mn = σF

xm,xn =

{

F (xn) if m = n,

0 if m �= n.

In R[t]�G,σF � we have xt = x1 · tx0 = 1σF
11(t)xx

0 = t2x.

Example 2.3. Similarly, if K is a field of prime characteristic p and G is
as in the previous example, let F : G → End(K) take each xn to µn, where µ
is the Frobenius monomorphism: µ(a) = ap for all a ∈ K. The resulting ring
K�G,σF � is the Frobenius polynomial ring in x over K in which xa = apx
for all a ∈ K.

Example 2.4. Let R[t1, t2, t3] be the polynomial ring in three commut-
ing indeterminates over a ring R with identity, S3 the symmetric group of
degree 3. Since each permutation of {t1, t2, t3} defines an automorphism of
R[t1, t2, t3], we get a monoid homomorphism F : S3 → End(R[t1, t2, t3]) by
defining F (λ)(ti) = tλ(i) for all λ ∈ S3 and i = 1,2,3 and F (λ)(a) = a for all

λ ∈ S3, a ∈ R. In R[t1, t2, t3]�S3, σ
F �, for instance, if ρ is the cycle (1, 2, 3),

we have (x1ρ)(x2λ) = x1x3ρλ for each λ ∈ S3.

For a given ring A, the assignment (G,F ) �→ A�G,σF � is in a sense nat-
ural. We have

Proposition 2.5. Let A be a ring, G, G′ monoids, F : G → End(A),
F ′ : G′ → End(A) monoid homomorphisms. Every monoid homomorphism
ϕ : G → G′ such that F ′ ◦ ϕ = F induces a unique ring homomorphism
ψ : A�G,σF � → A�G′, σF ′

�.
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Proof. Since A�G,σF � is a free A-module on G, there is a unique mod-
ule homomorphism ψ : A�G,σF � → A�G′, σF ′

� such that ψ(ag) = aϕ(g) for
all a ∈ A, g ∈ G. But ψ also preserves multiplication: for all a, b ∈ A, x, y
∈ G we have

ψ(ax · by) = ψ((aF (x)(b)) · xy) = aF (x)(b)ϕ(xy) = aF (x)(b)ϕ(x)ϕ(y)

= aF ′(ϕ(x))(b)ϕ(x)ϕ(y) = aϕ(x) · bϕ(y) = ψ(ax)ψ(by). �

Corollary 2.6. Every ring A�G,σF � is an A-homomorphic image of

a skew polynomial ring over A (in the sense that there is a surjective ring

homomorphism from the skew polynomial ring to A�G,σF � which fixes the

elements of A). If G is commutative, the indeterminates involved can be

assumed to commute.

Proof. There is a free monoid L and a surjective monoid homomor-
phism φ : L → G. Then F ◦ φ : L → End(A) is a monoid homomorphism.
By Proposition 2.5 there is a ring homomorphism θ : A�L,σF◦φ� → A�G,σF �
with θ(ax) = aφ(x) for all x ∈ L. Since φ is surjective, so is θ. If G is com-
mutative we can replace L by a free commutative monoid. �

A normalizing extension of a ring R with identity is a ring S with the
same identity such that R ⊆ S, S is a left and a right R-module and there
are elements xi, i ∈ I of S such that S =

∑

i∈I Rxi and Rxi = xiR for every
i ∈ I . See [3] for details. Examples include group- and semigroup-rings and
matrix rings (with respect to the set of so-called matrix units over the subring
of scalar matrices). It is natural to ask when a ring A�G,σ� is a normalizing
extension of A (i.e. {a · e : a ∈ A}) with respect to G (i.e. {1 · x : x ∈ G}).

Theorem 2.7. (i) For a D-structure σ we have σx,y = 0 whenever x �= y

if and only if σ = σF for some monoid homomorphism F : G → End(A).
(ii) If A�G,σ� is a normalizing extension of A with respect to G, then

σ satisfies the conditions of (i). The converse is true if and only if σ(x) is

surjective for each x ∈ G.

Proof. (i) If σx,y is zero whenever x �= y, then by (i), (ii) and (iv2) of
Condition (A), each σx,x is an endomorphism of A. By (iii) of Condition (A),
σxy,xy = σx,x ◦ σy,y for all x, y so since by (iv4) σe,e = id, the correspondence
x �→ σx,x defines a monoid homomorphism which determines σ. The con-
verse is clear.

(ii) If A�G,σ� is a normalizing extension, then for each a ∈ A there exists,
for each x ∈ G, an element a′ of A such that

(a′ · e)(1 · x) = a′x = xa = (1 · x)(a · e).
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But

(a′ · e)(1 · x) = a′
∑

y∈G

σe,y(1) · yx = a′ · x,

while

(1 · x)(a · e) = 1
∑

z∈G

σx,z(a) · ze =
∑

z∈G

σx,z(a) · z,

so equating coefficients (asA�G,σ� is a free left A-module) we get σx,x(a) = a′

and σx,z(a) = 0 for z �= x. Since a and x are arbitrary, the conditions of (i)
are met.

If σ is defined by a homomorphism F : G → End(A) then for each x ∈ G
we have xa = F (x)(a)x for all a ∈ A so xA ⊆ Ax. If each F (x) is surjective,
then for every a ∈ A, x ∈ G there is a b ∈ A such that a = F (x)(b) and then
ax = F (x)(b)x = xb, whence Ax ⊆ xA. Thus Ax = xA for all x ∈ G and
A�G,σ� is a normalizing extension. If some F (x) is not surjective, let a be
in A\ℑ(F (x)). Suppose ax = xc for some c ∈ A. Then ax = xc = F (x)(c)x,
so, as A�G,σ� is a free left A-module on G, we must have a = F (x)(c), which
is impossible. Hence there is no such c and it follows that Ax �= xA and thus
A�G,σ� is not a normalizing extension of A. �

The converse in (ii) of Theorem 2.7 does not hold in the following exam-
ple.

Example 2.8. We consider the Frobenius polynomial ring (see Exam-
ple 2.3) over a non-perfect field K of characteristic p. If a ∈ K then for ax
to be in xK there must be an element c ∈ K with ax = xc = cpx and thus
a = cp.

There is a different sort of “converse” to (ii) of Theorem 2.7. We can ask
the question: “When is a normalizing extension S of a ring R a generalized
monoid ring corresponding to a D-structure?”. Excluding “accidental iso-
morphisms,” the question only makes sense if a generating set for S over R
is a monoid and S is a free left R-module on this generating set. These two
conditions actually suffice.

Theorem 2.9. Let S be a normalizing extension of R generated by a
multiplicative submonoid G such that S, with its internal multiplication, is a
free left R-module generated by G. Then S is a skew monoid ring over R with
respect to G and hence a generalized monoid ring defined by a D-structure.

Proof. For every r ∈ R, g ∈ G there exists an element r′ ∈ R with
gr = r′g, and r′ is uniquely determined by r and g by the freeness of S.
We rename r′ as rg, so that gr = rgg for all r ∈ R, g ∈ G. For r, s ∈ R,
g ∈ G we have

(r + s)gg = g(r + s) = gr + gs = rgg + sgg = (rg + sg)g;
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(rs)gg = g(rs) = (gr)s = (rgg)s = rg(gs) = rgsgg,

so by freeness, (r+ s)g = rg+ sg and (rs)g = rgsg. Let ϕg(r) = rg for all r, g.
Then each ϕg is a ring endomorphism of R.

For g, h ∈ G, r ∈ R, we have

ϕgh(r)g = rghg = ghr = g · hr = g · rhh = grh · h = (rh)gg = ϕg ◦ ϕh(r)g,

so by freeness ϕgh(r) = ϕg ◦ ϕh(r) for all r. Also, the common identity
of R and S is the identity of G and it commutes with all elements of R, so
ϕ1(r) = r for all r ∈ R. Putting this together, we see that there is a monoid
homomorphism

ϕ : G → End(R) : g �→ ϕg.

In the resulting skew monoid ring we have gr = ϕ(g)(r)g = ϕg(r)g = rgg for
all r, g, and this is the original multiplication of S. �

The relationship between our monoid rings and normalizing extensions
is a bit more subtle, however. It can happen that a monoid ring A�G,σ� is
isomorphic to a ring which is a normalizing extension of an isomorphic copy
of A. For many purposes this is as good as being a normalizing extension.

Example 2.10 [6, Example 2.2]. Let G be a group, R =
∑

g∈G Rg a

G-graded ring. For x, y ∈ G, r =
∑

g∈G rgg ∈ R, let σx,y(r) =
∑

g−1xg=y rg.
The resulting D-structure is far from being defined by a homomorphism. In
R�G,σ� we have

(r · x)(s · y) = r
∑

g∈G

σx,g(s) · gy

for all r, s ∈ R, x, y ∈ G. Hence for x, y,w, z ∈ G, aw ∈ Rw, az ∈ Rz we have

(aw · x)(az · y) = aw
∑

g∈G

σx,g(az) · gy = aw
∑

g∈G

∑

h−1xh=g

(az)h · gy.

But (az)h = az if h = z and zero otherwise, so the only value of g which makes
a contribution is z−1xz and so (aw ·x)(az · y) = awaz · z

−1xzy. Thus R�G,σ�
is the generalized group ring of Năstăsescu [9]. This is clearly not a skew
group ring. However, as was pointed out in a review [8] of [9], the function
ϕ : R[G] → R�G,σ� with ϕ(aw ·x) = aw ·wx (for all x,w ∈ G,aw ∈ Rw) is an
isomorphism. Also the correspondence r =

∑

g∈G rg �→
∑

g∈G rg · g
−1 defines

an injective homomorphism i : R → R�G,σ�. Moreover, ϕ(i(R)) = Re ∼= R.
Now, calculating in R�G,σ�, for all w,x, y, z ∈ G, aw ∈ Rw, az ∈ Rz , we have

ϕ(aw · x)ϕ(az · y) = (aw · w−1x)(az · z
−1y)
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= awaz · z
−1(w−1x)z(z−1y) = awaz · z

−1w−1xy = awaz · (wz)
−1xy.

But awaz ∈ Rwz, so awaz ·(wz)
−1xy = ϕ(awaz ·xy). Thus R�G,σ� = ϕ(R)[G]

(by a slight abus de langage). The main point is that R�G,σ�, despite be-
ing defined by a rather intricate D-structure, is nevertheless a normalizing
extension of an isomorphic copy of R.

Our second example of a “disguised skew monoid ring” is not actually a
normalizing extension.

Example 2.11. Let R[x] be a polynomial ring, G the free monoid on
a single generator y. Writing σmn instead of σym,yn we get a D-structure σ

from R[x] and G where σ00 = id, σm,2jm(r0 + r1x+ · · ·+ rkx
k) = rj and all

other σmn = 0. In R[x]�G,σ� we have yx = xy2. (This is a special case of [6,
Example 2.5].) Thus R�G,σ� is the ring of polynomials in x and y over R
in which the indeterminates commute with the elements of R but yx = xy2.
This is not (defined as) a skew polynomial ring and σ is not defined by a ho-
momorphism. But in Example 2.2, renaming G as H and R[t] as R[y], we
get the skew polynomial ring R[y]�H,σF �, in which xy = y2x. This ring is
clearly isomorphic to the opposite ring of R�G,σ�, so that with respect to
many important properties it is the same as R�G,σ�, though the latter is
defined by a D-structure which is not defined by a monoid homomorphism.
Note that R[y]�H,σF � is not a normalizing extension as its mappings are not
surjective (Theorem 2.7), but in this case as in the previous example a gener-
alized monoid ring is produced whose relation to the coefficient ring cannot
be immediately deduced from the form of the D-structure which defines it.

3. Subnormalizing extensions

A ring S with identity is a subnormalizing extension or a triangular ex-
tension of a subring R with the same identity with respect to a finite or
countably infinite set of elements xn (n being a positive integer) if S =
∑

Rxn =
∑

xnR and for each (relevant) j we have
∑

n≤j Rxj =
∑

n≤j xnR.
It is usual to take x1 to be the common identity of R and S. Normalizing
extensions are subnormalizing extensions but the converse is false in general.
For further details see [7], [11]. For the monoid ring corresponding to a D-
structure to be a subnormalizing extension with respect to its monoid it is
not necessary that the D-structure be defined by a monoid homomorphism.

Example 3.1. Let A be a ring with identity, G = {e, x} a cyclic group
of order 2 (so that x2 = e). Let δ be a derivation of A such that 2δ = 0 = δ2.
For an example of such a derivation, let c be a non-central element of A such
that 2c = 0 = c2 and δ(a) = [c, a] for all a ∈ A. We get a D-structure for A
and G by defining

σee = id = σxx; σex = 0; σxe = δ.
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Everything is pretty straightforward. Here are two parts of the verifica-
tion of Condition (A)(iii), which are the only occasions where the assump-
tions about δ are needed. (Alternatively, all parts of Condition (A) can be
deduced from Examples 4.3 and 4.4 below.) We have

σxx ◦ σxx + σxe ◦ σxe = id2 + δ2 = id = σee = σxx,e

and

σxe ◦ σxx + σxx ◦ σxe = δ ◦ id + id ◦ δ = 2δ = 0 = σex = σxx,x.

Since σxe �= 0, the corresponding monoid ring is not a skew monoid ring.
Now for each a ∈ A, we have xa = (1 · e)(a · e) = σxe(a) · ee+ σxx(a) · xe =
δ(a)e+ ax. Thus

ea = ae, xa = ax+ δ(a)e ∈ Ax+ Ae

and

ax = xa− δ(a)e ∈ xA+ eA,

so that A�G,σ� is a subnormalizing extension of A with respect to {e, x}.
If we take H = {e,x} with x2 = x but now require that 2δ = 0 and δ2 = δ

(e.g. if δ is the inner derivation defined by a non-central idempotent u with
2u = 0) we get a D-structure for A and H using the same mappings as
for G. Again the resulting ring A�H,σ� is a subnormalizing extension but
not a skew monoid ring. (Apart from the verification of Condition (A)(iii)
everything is the same as in the example using G.)

Example 3.2. The (first) Weyl algebra over a field K can be viewed
as the monoid ring over the ordinary polynomial ring K[x] defined by an
infinite cyclic monoid �y� with respect to a D-structure. (See [5, Example
2.1].) It is clear from the specification of this D-structure that the algebra
is not a skew monoid ring. It is, however, a subnormalizing extension with
respect to {yn : n ≥ 0}. This is shown as follows. We have yx = xy+1, from
which it follows easily by induction that ynx = xyn + nyn−1 for all n ≥ 1.
For each n ≥ 1, a further induction (on m) shows that ynxm ∈

∑n
i=0 K[x]yi

for each m. Similarly, starting from the relation xy = yx− 1 we can show
that xmyn ∈

∑n
i=0 y

iK[x].

Example 3.3. Consider now the third Weyl algebra. Again as in
[5, Example 2.1] we see this as a monoid algebra over a polynomial ring
K[x1, x2, x3] determined by the free commutative monoid generated by
{y1, y2, y3}. The elements of this monoid, the “monic monomials”, can be
labelled by their ordered triples of indices, and the triples given the lexi-
cographic order, which is linear: (r1, r2, r3) < (s1, s2, s3) when at the first

Acta Mathematica Hungarica

E. P. COJUHARI and B. J. GARDNER350



Acta Mathematica Hungarica 154, 2018

SKEW RING EXTENSIONS AND GENERALIZED MONOID RINGS 9

place where they differ (reading from left to right), say the tth place, we
have rt < st. Then the lowest label, (0, 0, 0), goes with the identity. Every
monomial in K[x1, x2, x3] has the form axm1

1 xm2

2 xm3

3 , where a ∈ K, since the
xs commute. Then as the ys commute, every monomial in the Weyl algebra
has the form αyn1

1 yn2

2 yn3

3 , where α ∈ K[x1, x2, x3]. It may be assumed that
α is a monomial; let α = axm1

1 xm2

2 xm3

3 . Now

αyn1

1 yn2

2 yn3

3 = axm1

1 xm2

2 xm3

3 yn1

1 yn2

2 yn3

3 = axm1

1 xm2

2 yn1

1 yn2

2 (xm3

3 yn3

3 )

(as x3 commutes with y1 and y2)

= a(xm1

1 yn1

1 )(xm2

2 yn2

2 )(xm3

3 yn3

3 )

(by similar arguments). Now each x and the corresponding y generate an
isomorphic copy of the first Weyl algebra over K, so by what was proved
about that algebra above there are polynomials αi(x1) in x1, βj(x2) in x2
and γℓ(x3) in x3 such that

αyn1

1 yn2

2 yn3

3 = a

n1
∑

i=1

yi1αi(x1)
n2
∑

j=1

y
j
2βj(x2)

n3
∑

ℓ=1

yℓ3γℓ(x3)

= a

n1
∑

i=1

n2
∑

j=1

n3
∑

ℓ=1

yi1y
j
2y

ℓ
3αi(x1)βj(x2)γℓ(x3),

as x2 commutes with y3 and x1 commutes with y2 and y3. Note that as i ≤
n1, j ≤ n2 and ℓ ≤ n3 we have (i, j, ℓ) ≤ (n1, n2, n3) lexicographically. Thus
the left module generated by an element of the monoid is contained in the
right module generated by itself and “earlier” elements. The corresponding
result with “left” and “right” interchanged follows from symmetry as in the
case of the first Weyl algebra above. This proves that the third Weyl algebra
is a subnormalizing extension.

In the case of characteristic p, it is shown by a different method in [7,
Example 4], that the Weyl algebra of degree 2r is a subnormalizing extension
of a polynomial ring.

4. More about subnormalizing extensions

Let S be a subnormalizing extension of R with respect to {x1, x2, . . . , xn}
or {x1, x2, . . . , xn, . . . }, where x1 = 1 = the identity of R. In view of Theo-
rem 2.9 it is reasonable to ask whether there is something like a D-structure
concealed in these specifications. If our extension is defined by a D-structure
then S is a free R-module with the xi as a basis and this basis is a monoid
with respect to the multiplication of S, with identity 1. We therefore assume
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that these conditions are met. Then x1r = r = rx1 for each r ∈ R. For
such r, as x2r ∈ x1R+ x2R = Rx1 +Rx2, there are unique elements r21, r22
of R such that x2r = r21x1 + r22x2. Similarly x3r = r31x1 + r32x2 + r33x3
with unique coefficients, and in general for i ≤ n we have xir =

∑

j≤i rijxj .
For uniformity let r11 = r for each r.

We define functions σxi,xj
: R → R for 1 ≤ j ≤ i ≤ n (where n is the

number of elements in the monoid) by setting σxi,xj
(r) = rij for all r. For

1 ≤ i < j ≤ n let σxi,xj
be the zero function. It will sometimes be convenient

to write xir =
∑n

j=i σxi,xj
(r)xj . Then for any i and all r, t ∈ R we have

xi(r + t) = xir + xit =
n
∑

j=1

σxi,xj
(r)xj +

n
∑

j=1

σxi,xj
(t)xj

=
n
∑

j=1

(σxi,xj
(r) + σxi,xj

(t))xj

and

xi(rt) = (xir)t =

( n
∑

j=1

σxi,xj
(r)xj

)

t =
n
∑

j=1

σxi,xj
(r)(xjt)

=
n
∑

j=1

σxi,xj
(r)

( n
∑

k=1

σxj ,xk
(t)xk

)

=
n
∑

j=1

( n
∑

k=1

σxi,xj
(r)σxj,xk

(t)

)

xk.

In this expression the coefficient of xk is
∑n

j=1 σxi,xj
(r)σxj,xk

(t). Thus

σxi,xj
(r + t) = σxi,xj

(r) + σxi,xj
(t);σxi,xj

(rt) =
n
∑

k=1

σxi,xk
(r)σxk,xj

(t)

for all r, t ∈ R, 1 ≤ i ≤ n, 1 ≤ j ≤ n (where we have interchanged j and k for
uniformity). Whenever it is more convenient we shall use the more compact
version:

σxi,xj
(rt) =

i
∑

k=j

σxi,xk
(r)σxk,xj

(t) for i ≥ j.

Hence our functions satisfy (i) and (ii) of Condition (A). Since for every
i we have xi1 = 1xi = 1xi +

∑

1<j≤i 0xj we have σii(1) = 1 and σxi,xj
(1) = 0

for j �= i, i.e. (iv1) and (iv2) of Condition (A) are satisfied. If i �= 1 then
i > 1 so σ1i is the zero map, while σ11(r) = r11 = r for all r ∈ R so we have
(iv3) and (iv4) too.
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Part (iii) of Condition (A) is more complicated; it remains an open ques-
tion whether it has to be satisfied or not. It is used in [5] only to prove that
the rings A�G,σ� are associative (pp. 35–36), and it is not known whether
or not it is necessary for associativity. On the other hand, subnormalizing
extensions are certainly associative, so there are two possibilities: either

(1) a weaker condition than (iii) suffices for associativity or
(2) all subnormalizing extensions (satisfying the obvious requirements)

come from D-structures.
Be all this as it may, there are monoids M such that every subnormaliz-

ing extension defined by the adjunction of the elements of M which is a free
left module over the ground ring defines a D-structure. We will give exam-
ples shortly, but first we will show that when a D-structure does result, its
corresponding monoid ring coincides with the subnormalizing extension.

Theorem 4.1. Let G = {x1, x2, . . . , xn} or {x1, x2, . . . , xn, . . . } be a
monoid with identity x1, S =

∑

Rxi a subnormalizing extension of a ring R
in which the monoid multiplication agrees with the ring multiplication on the
xi and which is a free left R-module in which the xi constitute a basis. For
i ≥ j and for r ∈ R let σxi,xj

(r) = rij , where xir = ri1x1 + ri2x2+ · · ·+ riixi.
For i < j let σxi,xj

be the zero map. If the mappings σxi,xj
form a D-struc-

ture σ, then R�G,σ� = S.

Proof. We make the appropriate identifications between elements of G
and the corresponding elements of R�G,σ�. Then calculating in R�G,σ� we
get, for r, s ∈ R and all i, j,

(rxi)(sxj) = r

i
∑

k=1

σxi,xk
(s)xkxj = r

( i
∑

k=1

sikxk

)

xj = r(xis)xj = rxisxj,

and the last term represents the product of the two elements in S. �

Suppose, in the notation of the theorem, that S is a normalizing exten-
sion of R with respect to G. Then for each i and for each r ∈ R there is an
ri ∈ R for which xir = rixi. This means that σxi,xi

(r) = ri and σxi,xj
(r) = 0

when i �= j as in Theorem 2.9.
As we mentioned before, there are monoids for which all subnormalizing

extensions as in the theorem define D-structures. We now present two of
these. All the notation of the theorem and the preceding discussion will be
used without further comment.

Example 4.2. Let G = {x1, x2} be a cyclic group of order 2 with iden-
tity x1. In verifying (iii) of Condition (A) (which is all we have to do) we
need all representation of the elements of G as products. They are

x1 = x1x1 = x2x2; x2 = x1x2 = x2x1.
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Now

σx1x2,x1
= σx2,x1

(r) = r21,

while

σx1,x1
◦ σx2,x1

(r) + σx1,x2
◦ σx2,x2

(r) = (r21)11 + 0 = r21.

σx1x2,x2
(r) = σx2,x2

(r) = r22;

σx1,x1
◦ σx2,x2

(r) + σx1,x2
◦ σx2,x1

(r) = (r22)11 + 0 = r22.

σx2x1,x1
(r) = σx2,x1

(r) = r21;

σx2,x1
◦ σx1,x1

(r) + σx2,x2
◦ σx1,x2

(r) = (r11)21 + 0 = r21.

σx2x1,x2
(r) = σx2,x2

(r) = r22;

σx2,x1
◦ σx1,x2

(r) + σx2,x2
◦ σx1,x1

(r) = 0 + (r11)22 = r22.

σx1x1,x1
(r) = σx1,x1

(r) = r11 = r;

σx1,x1
◦ σx1,x1

(r) + σx1,x2
◦ σx1,x2

(r) = (r11)11 + 0 = r.

σx1x1,x2
(r) = σx1,x2

(r) = 0; σx1,x1
◦ σx1,x2

(r) + σx1,x2
◦ σx1,x1

(r) = 0.

Before treating the last two cases we do a helpful calculation. We have

x1r = (x2x2)r = x2(x2r) = x2(r21x1 + r22x2) = (x2r21)x1 + (x2r22)x2

= (r21)21x1x1 + (r21)22x2x1 + (r22)21x1x2 + (r22)22x2x2

= (r21)21x1 + (r21)22x2 + (r22)21x2 + (r22)22x1.

But x1r = rx1 + 0x2, so equating coefficients we get

(1) (r21)21 + (r22)22 = r; (r21)22 + (r22)21 = 0.

We now treat the remaining cases.

σx2x2,x1
(r) = σx1,x1

(r) = r11 = r;

σx2,x1
◦ σx2,x1

(r) + σx2,x2
◦ σx2,x2

(r) = (r21)21 + (r22)22 = r

by (1).

σx2x2,x2
(r) = σx1,x2

(r) = 0;

σx2,x1
◦ σx2,x2

(r) + σx2,x2
◦ σx2,x1

(r) = (r22)21 + (r21)22 = 0

by (1).

We note that the cyclic group of order 3 does not have this property.
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Example 4.3. The two element semilattice with identity also provides
“automatic D-structures”. Let G = {x1, x2} where x2

2 = x2 and x1 is an
identity. We shall show that every subnormalizing extension defined by G
defines a D-structure as in the theorem. We begin by obtaining some infor-
mation which will help with the verification of (iii) of Condition (A).

For each r ∈ R we have

r21x1 + r22x2 = x2r = x2(x2r) = x2(r21x1 + r22x2) = (x2r21)x1 + (x2r22)x2

= ((r21)21x1 + (r21)22x2)x1 + ((r22)21x1 + (r22)22x2)x2

= (r21)21x1 + [(r21)22 + (r22)21 + (r22)22]x2,

so

(2) (r21)21 = r21; (r21)22 + (r22)21 + (r22)22 = r22.

Now we check the various cases in (iii) of Condition (A).

σx1x1,x1
(r) = σx1,x1

(r) = r11 = r; σx1,x1
◦ σx1,x1

(r) = (r11)11 = r.

σx1x1,x2
(r) = σx1,x2

(r) = 0;

σx1,x1
◦ σx1,x2

(r) + σx1,x2
◦ σx1,x1

(r) + σx1,x2
◦ σx1,x2

(r) = 0 + 0 + 0 = 0.

σx1x2,x1
(r) = σx2,x1

(r) = r21; σx1,x1
◦ σx2,x1

(r) = (r21)11 = r21.

σx1x2,x2
(r) = σx2,x2

(r) = r22;

σx1,x1
◦ σx2,x2

(r) + σx1,x2
◦ σx2,x1

(r) + σx1,x2
◦ σx2,x2

(r)

= (r22)11 + 0 + 0 = r22.

σx2x1,x1
(r) = σx2,x1

(r) = r21; σx2,x1
◦ σx1,x1

(r) = (r11)21 = r21.

σx2x1,x2
(r) = σx2,x2

(r) = r22;

σx2,x1
◦ σx1,x2

(r) + σx2,x2
◦ σx1,x1

(r) + σx2,x2
◦ σx1,x2

(r)

= 0 + (r11)22 + 0 = r22.

σx2x2,x1
(r) = σx2,x1

(r) = r21; σx2,x1
◦ σx2,x1

(r) = (r21)21 = r21

by (2).

σx2x2,x2
(r) = σx2,x2

(r) = r22;

σx2,x1
◦ σx2,x2

(r) + σx2,x2
◦ σx2,x1

(r) + σx2,x2
◦ σx2,x2

(r)

= (r22)21 + (r21)22 + (r22)22 = r22

by (2).

Acta Mathematica Hungarica

SKEW RING EXTENSIONS AND GENERALIZED MONOID RINGS 355



Acta Mathematica Hungarica 154, 2018

14 E. P. COJUHARI and B. J. GARDNER

Since we have agreement in all cases, (iii) of Condition (A) is satisfied
and we have a D-structure.

Now here are some examples to further illustrate the relationship be-
tween subnormalizing extensions and D-structures over the monoids of Ex-
amples 4.3 and 4.4. We begin with a subnormalizing extension defined by a
monoid which does not give rise to a D-structure.

Example 4.4. Let K be a field,

R =

{[

a b
0 a

]

: a, b ∈ K

}

, S =

[

K K
0 K

]

, x1 =

[

1 0
0 1

]

and x2 =

[

1 0
0 0

]

.

For all a, b ∈ K we have
[

a b
0 a

]

x2 =

[

a 0
0 0

]

= x2

[

a 0
0 a

]

and

x2

[

a b
0 a

]

=

[

a b
0 0

]

=

[

a 0
0 a

]

x2 +

[

0 b
0 0

]

x1.

Hence S is a subnormalizing extension defined by {x1, x2} which is a monoid
with identity x1 and x2 = x2

2. We do not have a D-structure as S is not a free
left R-module on {x1, x2}. (One way to see this is by observingK-dimension:
R has dimension 2 so if S were a free module on two generators it would
have dimension 4; its dimension is 3, however.)

Example 4.5. Examples 4.2 and 4.3 provide a quicker way to verify
that the D-structures of Example 3.1 really are D-structures. The proof,
given in Examples 4.2 and 4.3, that we have subnormalizing extensions, is
much quicker.

Our next example gives a D-structure defined by a cyclic group of order 2
for which the monoid ring is not a subnormalizing extension.

Example 4.6. Let G = {e, x} where e is the identity and x2 = e. On
the ring

[

K K
0 K

]

let

σx,x

([

a b
0 c

])

=

[

a 0
0 a

]

, σx,e

([

a b
0 c

])

=

[

0 c− a
0 b

]

, σe,x = 0, σe,e = id.

This gives us a D-structure σ. But in
[

K K
0 K

]

�G,σ� we have, for all a, b, c ∈ K,

x

[

a b
0 c

]

= σxx

([

a b
0 c

])

xe+ σxe

([

a b
0 c

])

ee =

[

a 0
0 a

]

x+

[

0 c− a
0 b

]

e.
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Suppose for some r, s, t, p, q, ℓ ∈ K we have
[

a b
0 c

]

x = x

[

r s
0 t

]

+ e

[

p q
0 ℓ

]

=

[

r 0
0 r

]

x+

[

0 t− r
0 s

]

e+

[

p q
0 ℓ

]

e.

Then b = 0 and a = c. Hence
[

K K
0 K

]

�G,σ� is not a subnormalizing extension

(not with respect to G anyway; cf. Section 2.)

Example 4.7. We get a similar example to the preceding one with
x2 = x instead of the cyclic group by taking

σx,x

([

a b
0 c

])

=

[

a 0
0 a

]

, σx,e

([

a b
0 c

])

=

[

0 0
0 b+ c− a

]

, σe,x = 0, σe,e = id.

5. Rings graded by a cyclic group of order 2

In this section we shall obtain a characterization in terms of D-structures
of rings which can be graded by the cyclic group Z2 of order 2.

Theorem 5.1. Consider the following conditions on a ring A with iden-
tity.

(i) A is Z2-graded.
(ii) A has an automorphism f with f2 = id and an idempotent (f, id)-

derivation δ such that fδ = δf = −δ.
(iii) A has an automorphism f with f2 = id and an idempotent (f, id)-

derivation δ such that a = f(a) + 2δ(a) for all a ∈ A.
(iv) A has an automorphism f with f2 = id such that a− f(a) ∈ 2A for

all a ∈ A. Conditions (i), (ii) and (iii) are equivalent and they imply (iv).
If A is 2-torsion-free, then all four conditions are equivalent.

Proof. (i) ⇒ (ii). We take Z2 = {0, 1} and let A0, A1 be the compo-
nents corresponding to 0, 1 respectively. Thus A = A0 +A1 and each ele-
ment of A has a unique representation a = a0 + a1, a0 ∈ A0, a1 ∈ A1. Let
f(a) = f(a0 + a1) = a0 − a1 for each a ∈ A. If b = b0 + b1 ∈ A, then

ab = (a0b0 + a1b1) + (a0b1 + a1b0),

where the bracketed terms are in A0, A1 respectively. Hence

f(a)f(b) = (a0 − a1)(b0 − b1) = a0b0 − a0b1 − a1b0 + a1b1

= (a0b0 + a1b1)− (a0b1 + a1b0) = f(ab).

Since clearly f preserves addition and f2 = id, f meets all the requirements
of (ii). Let δ(a) = a1 for all a ∈ A. Then for all a, b ∈ A we have

δ(a)b+ f(a)δ(b) = a1b+ (a0 − a1)b1
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= a1(b0 + b1) + a0b1 − a1b1 = a1b0 + a0b1 = δ(ab).

Thus δ is an (f, id)-derivation and clearly idempotent. For all a ∈ A we have
fδ(a) = f(a1) = −a1 = −δ(a) and δf(a) = δ(a0 − a1) = −a1 = −δ(a).

(ii) ⇒ (i). Let A0 = {a ∈ A : δ(a) = 0} and A1 = {a ∈ A : δ(a) = a}.
Then A0 ∩A1 = 0 and for every a ∈ A we have a = (a− δ(a)) + δ(a), where
δ(a− δ(a)) = δ(a)− δ2(a) = 0 and δ(δ(a)) = δ(a). Thus additively A =
A0 ⊕A1. If a, b ∈ A0, then δ(ab) = δ(a)b+ f(a)δ(b) = 0, so ab ∈ A0. If a, b
∈ A1, then

δ(ab) = δ2(ab) = δ(δ(a)b+ f(a)δ(b))

= δ2(a)b+ fδ(a)δ(b) + δf(a)δ(b) + f2(a)δ2(b)

= δ(a)b− δ(a)δ(b)− δ(a)δ(b) + aδ(b) = ab− ab− ab+ ab = 0,

so ab ∈ A0. If a ∈ A0 and b ∈ A1, then

δ(ab) = δ2(ab) = δ(a)b− δ(a)δ(b)− δ(a)δ(b) + aδ(b) (as above)

= 0− 0− 0 + ab = ab,

so ab ∈ A1. Also δ(ba) = δ(b)a+ f(b)δ(a) = ba+ 0 = ba, so ba ∈ A1. Thus
A0A0, A1A1 ⊆ A0 and A0A1, A1A0 ⊆ A1, so A0 and A1 are the components
of a Z2-grading of A.

(i) ⇒ (iii). We preserve the relevant notation from (i) ⇒ (ii). Then f as
defined there is an automorphism with f2 = id. Let δ(a) = δ(a0 + a1 = a1)
for every a ∈ A. As in (i) ⇒ (ii), δ is a (f, id)-derivation. Now for every a
we have a− f(a) = a0 + a1 − (a0 − a1) = 2a1 ∈ 2A.

(iii) ⇒ (i). Since δ is idempotent, we have A = A0 ⊕ A1 additively as
in (ii) ⇒ (i). If a, b ∈ A0, then δ(ab) = δ(a)b+ f(a)δ(b) = 0, so ab ∈ A0.
If a, b ∈ A1, then δ(ab) = δ(a)b+ f(a)δ(b) = ab+ f(a)b. But a ∈ A1, so
2a = 2δ(a) = a− f(a), whence f(a) = −a and so δ(ab) = ab− ab = 0, i.e.
ab ∈ A0. If a ∈ A0 and b ∈ A1, then a− f(a) = 2δ(a) = 0, so f(a) = a.
Now δ(ab) = δ(a)b+ f(a)δ(b) = 0b+ ab = ab, so ab ∈ A1. Finally, δ(ba) =
δ(b)a+ f(b)δ(a) = ba+ f(b)0 = ba so ba is also in A1. This proves that A is
Z2-graded with components A0, A1.

Clearly (iii) ⇒ (iv).
If A satisfies (iv), let d(a) = a− f(a) for all a ∈ A. Then for all a, b ∈ A

we have

f(a)d(b) + d(a)b = f(a)(b− f(b)) + (a− f(a))b

= f(a)b− f(a)f(b) + ab− f(a)b = ab− f(ab) = d(ab),

so d is an (f, id)-derivation. If A is 2-torsion-free (and satisfies (iv)), then for
each a, there is a unique x ∈ A such that d(a) = 2x. Re-naming x as 1

2d(a)
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we implicitly define 1
2d. Since d(ab) = 2(f(a) · 12d(b)+

1
2d(a)b), by uniqueness

we have

1
2d(ab) = f(a) · 1

2d(b) +
1
2d(a) · b

so 1
2d is also an (f, id)-derivation. Also d2(a) = a− f(a)− f(a− f(a)) =

2d(a) for all a, since f2 = f , so 4( 12d)
2(a) = (21

2d)
2(a) = d2(a) = 2d(a) =

4 · 1
2d(a), so again since A is 2-torsion-free, we have (12d)

2 = 1
2d. Since

a = f(a) + d(a) = f(a) + 2 · 1
2d(a) for all a, A satisfies (iii) and the proof

is now complete. �

If A satisfies (i), (ii) and (iii) of the theorem and 2A = 0, then in (iii)
f = id so δ is an ordinary derivation. If, on the other hand, A is 2-torsion-
free, then f determines δ (δ(a) = 1

2(a− f(a))). These observations give us

Corollary 5.2. (i) If 2A = 0, then Z2-gradings correspond to idempo-
tent derivations (see [10]).

(ii) If A is 2-torsion-free, then Z2-gradings correspond to automor-
phisms f such that f2 = id and a− f(a) ∈ 2A for all a ∈ A (see [2]).

An examination of the proof of Theorem 5.1 shows that we have es-
tablished a bit more than is stated: each grading of A defines a pair f , δ
satisfying (ii) and conversely; likewise each grading defines a pair f , δ satis-
fying (iii) and conversely. In each case we have two inverse correspondences.

For instance, if we have a Z2-grading A = A0 +A1, the resulting f and δ
(f(a0 + a1) = a0 − a1; δ(a0 + a1) = a1) (which satisfy (ii)) in turn define a
grading A = B0 +B1, where B0 = {a ∈ A : δ(a) = 0} = A0 (as δ(a) is the
1-component of a with respect to the original grading). Similarly B1 = A1.

If f is an automorphism with f2 = f and δ(a) = a− f(a) for all a as in
the theorem,then by [5, Example 2] and the properties of δ established in
the proof of the theorem,we have a D-structure whose maps are multiples of
compositions of f and δ (and id), with some simplifications because f and δ
commute.

On the other hand, if we start with f and δ satisfying (ii), we get a grad-
ing A = A0 +A1, where A0 = {a ∈ A : δ(a) = 0} and A1 = {a ∈ A : δ(a) =
a}. For this grading, we define F and ∆ by setting F (a0+ a1) = a0 − a1 and
∆(a0 + a1) = a1 for all a0 ∈ A0, a1 ∈ A1. Then for all a0 ∈ A0, a1 ∈ A1, we
have

δ(a0 + a1) = δ(a0) + δ(a1) = 0 + a1 = ∆(a0 + a1) so ∆ = δ.

But then, for each a = a0 + a1 ∈ A we have

F (a) = F (a0 + a1) = a0 − a1 = a− 2a1 = a− 2∆(a) = a− 2δ(a) = f(a).

Thus F = f and ∆ = δ.
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When A is 2-torsion-free, we get similar correspondences involving (i)
and (iv). All of this is summarized in

Corollary 5.3 (to proof). The constructions of the theorem yield in-
verse bijections between the set of Z2-gradings of a ring A with identity and
pairs f , δ where f is an automorphism of A with f2 = id and δ is an idem-
potent (f, id)-derivation in each of the following cases:

(1) fδ = δf = −δ;
(2) a = f(a) + 2δ(a) for all a ∈ A.
When A is 2-torsion free, there are such bijections when
(3) a− f(a) ∈ 2A for all a ∈ A.

The argument used to prove (iv) ⇒ (iii) for 2-torsion-free rings in the
theorem cannot be extended to rings in general, as the following example
shows.

Example 5.4. Let A be the ring whose additive group is Z(2∞)⊕Z(2∞)
⊕ Z and whose multiplication is defined by the formula

(a, b, n)(c, d,m) = (ma+ nc,mb+ nd, nm).

It is easy to verify that this is a ring: in fact it is the standard unital
extension of the zeroring on the direct sum of two copies of Z(2∞). De-
fine f : A → A by setting f((a, b, n)) = (b, a, n) for all a, b, n. Then f is
an automorphism with f2 = f . Also (a, b, n)− f((a, b, n)) = (a− b, b− a, 0)
∈ 2A for all a, b, n, as Z(2∞) is a divisible group. Thus A satisfies (iv) of
the theorem. Suppose there is an additive endomorphism g of A such that
(a, b, n) = f((a, b, n))+2g((a, b, n)) for all a, b, n. If (a, b, n) has order 1 or 2,
then 2g((a, b, n)) = 0, so (a, b, n) is a fixed point of f . But Z(2∞) has an
element r of order 2, so (r, 0, 0) has order 2 in A, while f((r, 0, 0)) = (0, r, 0)
�= (r, 0, 0). Hence there is no such g, so in particular there is no (f, id)-
derivation to play this role.

This example also shows that the third pair of bijections in Corollary 5.3
do not exist for rings in general. The ring A of Example 5.4 is Z2-graded:
A = A0 +A1, where A0 = {(0, 0, n) : n ∈ Z} ∼= Z and A1 = {(a, b, 0) : a, b ∈
Z(2∞)}; the latter is isomorphic to the zeroring on the direct sum of two
copies of Z(2∞). We have A1A1 = {0} ⊆ A0, and the other requirements are
clearly met.

We do not know of a non-Z2-gradable ring with an automorphism satis-
fying (iv) of Theorem 5.1.

We end with a description of the monoid ring (skew polynomial ring)
associated with the “grading D-structure” referred to above (cf. [5, Example
2]). We retain our earlier notation.

Example 5.5. Let A = A0 +A1, f(a0 + a1) = a0 − a1, δ(a0 + a1) = a1
as in Theorem 5.1. Then for m ≥ n we have σmn = σxm,xn =

(

m
n

)

fnδm−n.
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But f2 = id and δ2 = δ so σmm = σxm,xm
= f if m is odd and id if m is even,

while for m > n, σmn = (−1)nδ. In particular σ00 = id, σ10 = δ and σ11 = f .
In the resulting A[x, σ] we have xa = f(a)x+ δ(a) = (a0 − a1)x+ a1 for all
a = a0 + a1 ∈ A. For instance, in the case of C with the standard grading
C = R+ Ri, we have x(r + si) = (r − si)x+ si for all r, s ∈ R.
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