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Abstract If S is a subnormalizing extension [7] of a ring R with identity generated by a
set which is a multiplicative submonoid of S and generates S as a free unital
left R-module, then using the left and right module structures of S one can
define a set of mappings R → R which satisfy all but (possibly) one of the
requirements for a D-structure [2], [3], [4]. It remains unknown whether this
remaining condition must in fact be satisfied, but we show that it is satisfied
for a number of particular monoids and is at least partially satisfied in general.
In the other direction it is known that many but by no means all D-structures
are linked to subnormalizing extensions in this way.
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1. INTRODUCTION

A ring S with identity is a subnormalizing extension [7] of a ring R with the
same identity 1 if S has a finite subset {x1, x2, . . . , xn} or a countably infinite
subset {x1, x2, . . . } such that

x1 = 1,

S =
∑
i

Rxi =
∑
i

xiR

and for every i
i∑

j=1

xjR =

i∑
j=1

Rxj .

Subnormalizing extensions are also called extensions triangulaires [6].
A D-structure [2], [3], [4] defined by a ring A with identity 1 and a monoid

G with an identity e is a family of self-maps σx,y of A, labelled by elements of
G and satisfying the following conditions for all a, b ∈ A and x, y, z ∈ G.
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Condition (A)
(0) For each x ∈ G and a ∈ R, we have σx,y(a) = 0 for almost all y ∈ G.
(i) Each σx,y is an additive endomorphism.
(ii) σx,y(ab) =

∑
z∈G

σx,z(a)σz,y(b).

(iii) σxy,z =
∑
uv=z

σx,u ◦ σy,v.

(iv1) σx,y(1) = 0 if x 6= y; (iv2) σx,x(1) = 1;
(iv3) σe,x(a) = 0 if x 6= e; (iv4) σe,e(a) = a.
With this notation we shall sometimes refer briefly to the system as “the

D-structure σ”.
A D-structure defines a generalized monoid ring A < G;σ > in which the

multiplication is given by the formula

ax · by = a
∑
z∈G

σx,z(b)zy.

For example, skew polynomial rings arise this way. Many other examples can
be found in [3], [4] and [5].

We shall generally retain all the above notation and use it without comment.
In some important cases A < G;σ > is a subnormalizing extension of A [5].

On the other hand, if S is a subnormalizing extension of R such that the xi
form a multiplicative submonoid of S and generate S as a free unital left R-
module we might ask how close S comes to being the generalized monoid ring
defined by a D-structure. (The two stated conditions on the xi are clearly
necessary.) It turns out that S comes quite close: we can use S to define
a set of self-maps of R which satisfy all the requirements for a D-structure
except (possibly) (iii). For some monoids (i.e. the set of xi as a submonoid
of S) (iii) must also be satisfied. Moreover, in such cases, the generalized
monoid ring defined by the resulting D-structure is the original subnormalizing
extension, ([5], Theorem 4.1). It is not known whether this is true of all
monoids. In this note we prove a general theorem to the effect that a weaker
form of (iii) is universally satisfied and provide further examples of (classes
of) monoids for which (iii) is satisfied. First, though, we have to describe the
maps associated with a subnormalizing extension. From now on we shall only
consider subnormalizing extensions for which the two stated conditions on the
xi hold, i.e.
the xi form a multiplicative submonoid of S and S is a free left unital
R-module freely generated by the xi.

For each xi and each r ∈ R there are uniquely determined ri1, ri2, . . . , rii ∈ R
such that

xir = ri1x1 + ri2x2 + · · ·+ riixi.

(They are uniquely determined because S is free.) If we re-name rij as
σxi,xj (r), this defines maps σxi,xj : R→ R for all i, j with i ≥ j. For i < j we
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let σxi,xj be the zero map. These maps satisfy all conditions for a D-structure
except possibly (iii) ([5], Section 4) and if the xi form a cyclic group of order
2 or a two element (semi)lattice, then (iii) is satisfied ([5], Examples 4.2 and
4.3).

2. RESULTS AND EXAMPLES

We shall say that a monoid G has automatic D-structures if whenever
G = {x1, x2, . . . , xn} or {x1, x2, . . . } for a subnormalizing extension S of a
ring R, the associated maps σxi,xj form a D-structure σ (and hence S =
R < G;σ >). The following theorem reduces the number of calculations
needed to show that a monoid has automatic D-structures.

Theorem 2.1. Let S be a subnormalizing extension of a ring R with the same

identity 1, S =
n∑
i=1

Rxi or S =
∑
i∈Z+

Rxi, where x1 = 1. Suppose further that

(i) {x1, x2, · · · , xn} or {x1, x2, · · · } is a multiplicative submonoid of S and
(ii) S is a free left R-module on the xi.

For r ∈ R and each i let xir =
i∑

p=1
σxi,xp(r)xp and for p > i let σxi,xp be the

zero map.
If xixj = xm, then

σxixj ,x` = σxm,x` =
∑

xsxt=x`

σxi,xs ◦ σxj ,xt

for ` ≤ m.

Proof. Let xixj = xm. Then for all r ∈ R we have∑
`≤m

σxm,x`(r)x` = xmr = xixj · r = xi · xjr = xi
∑
t≤j

σxj ,xt(r)xt

=
∑
t≤j

(xiσxj ,xt(r))xt =
∑
t≤j

(
∑
s≤i

σxi,xs(σxj ,xt(r)xs)xt.

Now as for t > j or s > i we have σxi,xs ◦ σxj ,xt(r) = 0, we therefore have, for
each ` ≤ m, equating coefficients,

σxm,x`(r)x` =
∑

xsxt=x`

σxi,xs ◦ σxj ,xt(r).

Since r is arbitrary we therefore have

σxixj ,x` = σxm,x` =
∑

xsxt=x`

σxi,xs ◦ σxj ,xt
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for all ` ≤ m.

Example 2.1. The free monoid F on a single generator x has automatic
D-structures. Since F = {e, x, x2, . . . } we standardize notation to fit our dis-
cussion by writing xn = xn+1 for all n (including e = x0). If xixj = xm and
m < `, then xm−1 = xm = xixj = xi−1xj−1 = xi+j−2, so i+ j − 2 = m− 1 <
`− 1. Hence if xrxs = x` then as above r + s− 2 = `− 1 > i+ j − 2 whence
i+ j < r + s. But then i < r or j < s, so σxi,xr ◦ σxj ,xs = 0 and thus∑

xrxs=x`

σxi,xr ◦ σxj ,xs = 0 = σxm,x` = σxixj ,x` ,

and by the theorem this is all we need.

A subnormalizing extension using F will be some kind of generalized poly-
nomial ring. Skew polynomial rings ([1], pp. 34-40) are subnormalizing exten-
sions. See also Propositions 6.1-6.5 of [3].

Example 2.2. The countably infinite chain C = {x1, x2, . . . } with the order
type of the natural numbers, when viewed as a semilattice with operation xixj =
xmax{i,j} is a monoid which has automatic D-structures. Clearly x1 is an
identity. If xixj = xm and m < `, then m = max{i, j} and if xrxs = x`,
we have ` = max{r, s} so r or s is equal to `. Hence either r > m ≥ i or
s > m ≥ j, so σxi,xr ◦ σxj ,xs = 0. Thus∑

xrxs=x`

σxi,xr ◦ σxj ,xs = 0.

Again, an appeal to the theorem completes the proof.

A right zero semigroup is a semigroup in which xy = y for all x, y. Clearly
(except for the one-element semigroup) a right zero semigroup cannot be a
monoid. We get a monoid by adjoining an identity, and such monoids provide
our next example.

Example 2.3. Let H = {x1, x2, . . . } be a countably infinite monoid where
x1 is the identity and {xi : i > 1} is a right zero semigroup. Then H has
automatic D-structures. We have to consider maps σxixj ,xk where xixj = xp
and p < k. Note that then k ≥ 2. There are several cases to consider, but in
every case, xrxs = xk precisely when s = k or r = k and s = 1; in particular
r or s is equal to k.

For i = j = 1, σx1,xr ◦ σx1,xs = 0 in all cases.
For i = 1 and j 6= 1, σx1,xr ◦ σxj ,xk = 0 = σx1,xk ◦ σxj ,x1 (as j (= p) < k).
For i 6= 1 and j = 1, σxi,xr ◦ σx1,xk = 0 = σxi,xk ◦ σx1,x1 (as i < k).
Now consider i, j, k > 1. Since xixj = xj in this case, we have j < k.
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If k > i then σxi,xr ◦ σxj ,xk = 0 = σxi,xk ◦ σxj ,x1.
There remains the case 1 < j < k ≤ i. We need to make a digression to

take care of this case.
For each element a of the ring of which H generates a subnormalizing ex-

tension we have

xja =

j∑
t=1

σxj ,xt(a)xt.

Also

xja = xixj · a = xi · xja = xi

j∑
t=1

σxj ,xt(a)xt =

j∑
t=1

(xiσxj ,xt(a))xt

= (

i∑
v=1

σxi,xv ◦ σxj ,xt(a))x1 + (multiples of x2) + · · ·+ (multiples of xj).

Equating coefficients of xk in these two expressions (remembering that j <
k ≤ i) we get

σxi,xk ◦ σxj ,x1 = 0.

But also σxi,xr ◦ σxj ,xk = 0 for every value of r.
In all cases we have shown that if xixj = xp and p < k then∑

xrxs=xk

σxi,xr ◦ σxj ,xs = 0 = σxixj ,xk .

As usual the remaining cases are covered by the theorem.

Example 2.4. The cyclic group of order 3 has automatic D-structures. We
omit the details; even with the simplification provided by the theorem a lot of
calculation is needed, similar to that used in the very last case in Example 2.3.
Cf. also the corresponding calculations for the cyclic group of order 2 in [5]
(Example 4.2).

The arguments used in Examples 2.2 and 2.3 work verbatim to show that
finite chains and finite right zero semigroups with identity adjoined have au-
tomatic D-structures.

As pointed out earlier, it remains an open question whether all monoids
have automatic D-structures. The conditions imposed on subnormalizing ex-
tensions, that they are free modules and that the generators form a submonoid,
are strong. At the same time, a generalized monoid ring defined by a D-
structure can be quite different from the standard monoid ring: for instance,
over a field K of characteristic 0, the (first) Weyl algebra, which is simple, is
a generalized monoid ring over the polynomial ring K[X].
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Recognizing a potential D-structure in a subnormalizing extension may
make it easier to show that there really is a D-structure there by obviat-
ing the need to check (iii) of the defining conditions to establish associativity
of the generalized monoid ring. However checking associativity of a potential
subnormalizing extension might be just as hard.

Given a ring A with identity, a monoid G and self-maps σx,y of A (x, y ∈ G)
which satisfy all the requirements for a D-structure except possibly (iii), we
can still use the maps as before to define an extension of A which we shall
still call A < G;σ >, though it may not be associative. Although if (iii) is
true then the extension is associative, and (iii) was used in [3] just to prove
associativity, it is not known whether (iii) is necessary for associativity. As
(iii) can be difficult (or at least time-consuming) to verify, a weaker condition
which yet assures associativity would be useful. The following example has
connections with several aspects of this discussion.

Example 2.5. Let A be a ring with identity, δ a derivation on A. For a cyclic
group G = {e, x} of order 2, let

σe,e = σx,x = id; σe,x = 0; σx,e = δ.

If 2δ = 0 = δ2 we get a D-structure ([5], Example 3.1). Without imposing any
conditions on the derivation δ, suppose A < G;σ > is associative. Then for
all c ∈ A, we have

x(x · cx) = x(1σx,x(c)xx+ 1σx,e(c)ex) = x(ce+ δ(c)x) = x · ce+ x · δ(c)x

= 1σx,x(c)xe+ 1σx,e(c)ee+ 1σx,x(δ(c))xx+ 1σx,e(δ(c))ex

= cx+ δ(c)e+ δ(c)e+ δ2(c)x = (c+ δ2(c))x+ 2δ(c)e

and
x2 · cx = e · cx = 1σe,e(c)ex+ 1σe,x(c)xx = cx.

Comparing the two expressions we see that (as c is arbitrary) 2δ = 0 = δ2.
Now in Example 3.1 of [5] it was shown that these conditions on δ imply that
((iii) is satisfied and hence) A < G;σ > is associative. Thus in this very
restricted setting, where pretty much everything is defined by a derivation δ,
the following are equivalent:

1 A < G;σ > is associative;
2 2δ = 0 = δ2;
3 (iii) is satisfied.

Also, as xa = 1x · ae = 1σx,x(a)xe + 1σx,e(a)ee = ax + δ(a)e, we see that
A < G;σ > is a “non-associative subnormalizing extension” of A.

How non-associative can the ring be? We have

(ax)2ax = aδ(a)ae+ (a3 + a(δ(a))2)x
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and
ax(ax)2 = (aδ(a)a+ 2a2δ(a))e+ (a3 + a(δ(a))2 + a2δ2(a))x.

Thus if there is some a ∈ A such that 2a2δ(a) 6= 0 or a2δ2(a) 6= 0 then the
ring is not even third-power-associative. For such a case, take A to be the
polynomial ring R[X], let δ be formal differentiation and a = 2X.

One aspect of our discussion of automatic D-structures needs some com-
ment. The generators of a subnormalizing extension are listed in a certain
way and the defining properties of a subnormalizing extension are expressed
in terms of the generators and the listing. (We use the word “listing” rather
than “order” to avoid getting mixed up with the order of ordered monoids.)
It is conceivable that a ring extension which is not subnormalizing for a given
listing of the generators might become so if the generators are listed in a
different way.

Each of the monoids we have examined has its elements listed in just one
way (matched in associated subnormalizing extensions). Could a monoid cease
to have automatic D-structures if its elements were listed in a different way?
Possibly; we don’t know.

The elements of a monoid of order 2 can only be listed in one way as the
identity must come first. There are no problems here. For a cyclic group G of
order 3, G = {e, x,2 }, we have always used the listing x1 = e, x2 = x, x3 = x2.
The other possible listing is e, x2, x. But as x2 also generates G and (x2)2 = x,
this is not essentially different. If H = {x1, x2, . . . xn, . . .} where {xn : n > 1}
is a right zero semigroup, then for every permutation ρ of Z+ which fixes 1,
we get an automorphism

H → H; (∀n) xn 7→ xρ(n).

The cases of the infinite chain with identity as lowest element and the free
monoid on one generator are less clear. However, these are both ordered
monoids and the listings we have used correspond to their orders. Thus we
can say that as ordered monoids they have automatic D-structures. Finite
chains with identity as smallest element are also ordered monoids.
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