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Abstract
Solving physics problems is often done superficially, without making an in-
depth analysis of the results obtained, limiting itself only to determining the
numerical values of some physical quantities. In order to analyze the results
obtained after solving physics problems and to more deeply understand the
essence of the phenomena that take place, a graphic representation of the
obtained results is often necessary. In this paper, we present examples of solv-
ing different problems from physical systems for which the effect of bistability
occurs. We use the graphical method to analyze the results obtained. We men-
tion that the results presented in this paper are suited for teaching undergraduate
students.

Keywords: graphical method, bistability, mechanics, undergraduate students,
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(Some figures may appear in colour only in the online journal)

1. Introduction

The phenomenon of bistability is well-known in optics (optical bistability) [1], magnetism
(magnetic bistability) [2], electricity (bistable circuits) [3] etc. In most cases the nature of this
phenomenon is quantum. We propose in this paper an analysis of two examples of bistability
in mechanics, and relatively simple explanation of this phenomenon. We use the graphical
method to synthesize the results predicted by the theoretical models. Two examples could be
useful for students to understand the phenomenon of bistability in physics.

The paper is structured as follows. We start in section 2 by describing rotation of cylinder
with mobile piston. Section 3 shows bistable behavior of displacement of mercury in tubes.
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Figure 1. The scheme of the cylinder with mobile piston inside. By black, we show the
initial position of piston when cylinder is static and by gray when the cylinder is rotating.

These two setups are well explained by graphical method. The summary and conclusions are
given in section 4.

2. Rotation of cylinder with mobile piston

Let start our analysis considering a horizontal cylinder closed at both sides with a mobile piston
of mass m inside. The piston can slide without friction along the cylinder.

The pressure of air in both sides of the cylinder is p0, when cylinder is static in ini-
tial position. The initial distances from center of piston to the ends of cylinder are respec-
tively l1 and l2 (see figure 1). We consider the follow question: at which angular velocity
has to be rotated the cylinder so that the displacement of the piston from the equilibrium
position is x?

To solve this problem, we find the forces acting to the piston. Two forces act to the piston
from left and right parts of cylinder with the result force F1 of the following form

F1 = (p2 − p1)S, (1)

where p1 and p2 are respectively, the air pressures on the left and right sides of piston during
its rotation. S is the cross-sectional area of the cylinder. We mention that, during the rotation
of the cylinder this force always is oriented to the axis of rotation.

In what follows, we consider the air in both sides of the cylinder subject to an isothermal
process. Thus, we have

p0l1S = p1(l1 + x)S, p0l2S = p2(l2 − x)S.

Expressing p1 and p2 from the last equations and introducing them in (1), we obtain

F1 =

(
p0l2

l2 − x
− p0l1

l1 + x

)
S. (2)

The force that gives to the piston centripetal acceleration can be written in the form

F2 = mω2(l1 + x), (3)

where ω is angular velocity.
When the piston is in equilibrium F1 = F2, i.e.(

p0l2
l2 − x

− p0l1
l1 + x

)
S = mω2(l1 + x).
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Figure 2. Schematic view of the dependence of the position of the piston x on the angular
velocity of the cylinder ω.

From this equation we obtain the formula for ω

ω =

√
l2(l1 + x) − l1(l2 − x)

m(l2 − x)(l1 + x)2
p0S. (4)

From expression (4) one can see that for any value of x < l2 we obtain a single value of ω.
On the other hand, when we look to the dependence of x(ω) (see figure 2), we see that things
are different. For a certain interval of values of the rotation speed, we can obtain three values
of equilibrium position x.

Figure 2 shows that the displacement x of the piston increases with the increase of the
angular velocity ω and for ω = ω1 the piston jumps from position x1 to x2. Decreasing the
angular velocity ω displacement x decreases, and for ω = ω2 the piston again jumps from
position x3 to x4. We observe that the piston cannot occupy positions in the range x1 < x < x3.
Thus, we obtain an effect analogous to the bistability phenomenon in quantum physics.

To explain this phenomenon shown in figure 2, we plot in figure 3 the dependence of force
F1(x) using equation (2) shown by red line (curve 1). We plotted also in this figure the force
F2(x) for different values of ω. Thus, one can see that the slope of the lines 2, 3, and 4 depends
on the angular velocity ω of the cylinder. For a certain angular velocity (line 2) there are three
equilibrium states of the piston: x5, x6 and x7.

When we start to rotate the cylinder at some angular velocity, the piston is in the equilibrium
position x5. For a small deviation of the piston to the right side (see figure 3), the air pressure
force in the tube (curve 1) is higher than the centrifugal force (line 2) and the piston returns to
the steady state. For a small deviation of the piston to the left side, the air pressure force in the
tube is lower than the centrifugal force and the piston returns again to the steady state. Thus,
the point x5 is a stable equilibrium point. The characteristics of point x7 are similar to those
of point x5. On the other hand, for state x6, at a small deviation of the piston to the right, the
air pressure force in the tube is lower than the centrifugal force and the piston will move away
from the steady state, i.e. it moves to the steady state x7. Opposite at a small deviation of the
piston to the left, the air pressure force in the tube is higher than the centrifugal force and the
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Figure 3. Forces acting on the piston in dependence on the displacement x. 1 displays
the resulting force acting from the tube air (red curve); 2, 3, 4 show the centrifugal forces
for different ω (blue lines).

piston will also move away from the steady state to the steady state x5. Thus, point x6 is an
unstable equilibrium point.

Increasing the angular velocity ω, the slope of linear dependence (2) increases and for
ω = ω1 (see line 3 in figure 3) the piston has only two equilibrium states: x1 and x2. The
stability of position x2 does not differ from that of x7, i.e. it is stable equilibrium position. The
position x1 is metastable equilibrium position [4] because the piston, being deviated slightly
to the right, moves away from this position, and being deviated to the left returns back to
it. At the angular velocity ω1 the piston will be in metastable equilibrium in the position x1.
For a small increase of the angular velocity ω, the piston jumps to the position x2. By further
increase of angular velocity, x also increases. On the other hand, when we decrease the angu-
lar velocity, x also decreases. For ω = ω2 (curve 4) the piston reaches the unstable position
x3. When we continue to decrease the rotational speed, the piston jumps to the position x4.
We mention that, someone could get the values of ω using x from the interval x1 < x < x3, in
expression (4), but a wrong result will be obtained, because the piston cannot be in equilibrium
in this domain.

To conclude, we consider what is predicted to happen when we increase the angular velocity
ω (see figure 4). One can observe that for low angular velocity the displacement x increases
monotonically with increase of ω along so called lower branch of bistability (blue curve).
Note that, for ω = ω1 the jump (switching) from x1 to x2 can be observed. Further on the
dependence x(ω) follows the high branch of bistability. When considering the decrease of the
angular velocity ω the system follows red curve in figure 4. Thus, we obtain a hysteresis loop
in the dependence x(ω).

The results shown in figure 4 could be explained also by the competition of two forces
acting on the piston: the centrifugal force and the resulting pressure force acting on the air in
the tube. Initially, by increasing the rotational speed of the tube, the centrifugal force increases
in proportion to the pressure and the piston moves away from the equilibrium position. At
a rotational speed ω1 the centrifugal force increases faster than the pressure force and the
piston cannot be in equilibrium, so it moves away from the position x = x1 without increasing
the rotational speed. Approaching the end of the tube, the pressure force begins to increase
more abruptly and reaches the moment when this force again becomes equal to the centrifugal
one, and the piston stops in the position x = x2. Further, increasing the rotational speed, both
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Figure 4. Schematic hysteresis loop in the dependence of x(ω).

Figure 5. Heated air in tubes. (a) All mercury is in the lower tube. (b) Some of the
mercury has passed into the upper tube. (c) All the mercury is in the upper tube.

forces increase proportionally and the piston gradually moves away from the initial position.
By decreasing the rotation speed, the processes are repeated, only with the difference that in
the opposite direction the switching will take place at a rotation speed ω2 < ω1.

3. Displacement of mercury in tubes

In what follows, we consider a similar case of hysteresis effect observed in a tube closed at
one end, with a shape shown in figure 5. Inside the tube, there is a column of air with height
x0, separated from the atmosphere by a column of mercury with height H. T0 is the initial air
temperature in the tube. T is the temperature to vary. S1 and S2 are the cross-sectional areas of
lower and upper connected parts, respectively. H0 is the mercury height for normal atmospheric
pressure. We will determine how much the air in the tube needs to be heated so that the mercury
column move by x.
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We start with the equation of state of the ideal gas for air in tube

pV
T0

=
p1V1

T
, (5)

where

p = ρg (H + H0) , V = S1x0.

For p1 and V1 when x � H we can write expressions

p1 = ρg (H − x + x1 + H0) , V1 = S1 (x0 + x) .

From figure 5(b) we observe that

S1x = S2x1, or x1 =
S1

S2
x = αx, where α =

S1

S2
.

In this case p1 = ρg (H + H0 − (1 − α) x).
Taking into account the above formulas from (5) we obtain

ρg (H + H0) S1x0

T0
=

ρg (H + H0 − (1 − α) x) S1 (x0 + x)
T1

.

After some simple transformations we obtain

T1 = T0
(H + H0 − (1 − α) x) (x0 + x)

(H + H0) x0
. (6)

For the case x > H of high temperature we write the following expressions (see figure 5(c))

V1 = S1 (H + x0) + S2 (x − H) ,

P1 = ρg (H0 + H1) = ρg (H0 + αH) .

Using these formulas from (5) we obtain

T2 = T0
ρg (H0 + αH) [S1 (H + x0) + S2 (x − H)]

ρg (H0 + H) S1x0
,

and after simple transformations one can write

T2 = T0
(H0 + αH)

[
H + x0 + 1/α (x − H)

]
(H0 + H) x0

. (7)

Figure 6 shows the dependence of displacement on the temperature x(T ) using expressions
(6)-blue curve 1 and (7)-red line 2. From this figure one observe, that at the temperature T ′

the displacement of the lower surface of the mercury is x′. For T > T ′ the equation (6) has
no solutions. This means that for T > T ′ all the mercury from the surface tube S1 passes by
jumping into the surface tube S2, and the displacement of the mercury will be x > x2.

To explain this jump, we investigate the balance of the lower surface of mercury. To this
surface acts the pressure p1 from the mercury and the air in the atmosphere, also the pressure
p2 from the air in the tube. Mercury is in equilibrium when these pressures are equal p1 = p2.
The pressures p1 and p2 have the following forms

p1 =

{
ρg (H0 + H − x) for x � H

ρg (H0 + H1) = ρg (H0 + αH) for x > H,
(8)
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Figure 6. Dependence of mercury column displacement x on the air temperature in the
tube. 1-for x � H and 2-for x > H.

Figure 7. Dependence of lower surface pressure of the mercury on the displacement of
the air column in the tube x. Red (thick) 1-pressure p1. Blue (thin) 2, 3, 4-pressure p2 for
different temperatures (2-T = T ′; 3-T = T1; 4-T = T0).

p2 =
νRT

S1 (x0 + x)
for x � H. (9)

Figure 7 shows these dependences on displacements i.e. p1(x) and p2(x) [5, 6]. We see that
for T = T0, in the region x�H, the curve p2(x) intersects the line p1(x) at x= 0. For temperature
T = T1 the dependencies p1(x) and p2(x) in the region x � H have two points of intersection
x3 and x4. One can easy observe that for x = x3 the equilibrium of mercury is stable, and for
x = x4 is unstable. When T = T ′ the dependencies p1(x) and p2(x) have only one intersection
point x′ in the region x � H and an intersection point x2 in the region x > H. For a small
increase of temperature the dependencies p1(x) and p2(x) no longer have intersection points in
the region x � H, and the mercury will move from the unstable equilibrium position x′ to any
stable equilibrium position x > x2.

Figure 8 shows the dependence of displacement on temperature x(T ). We see that as long
as the temperature increases, the displacement of lower layer of mercury surface also increases
(curve 1) calculated from expression (6). At temperature T = T ′ the displacement increases
by jumping from x′ to x2. Further increasing the temperature, the displacement follows
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Figure 8. Hysteresis loop of system shown in figure 5.

line 2 calculated from expression (7). On the other hand, decreasing the temperature T leads
to a decrease of mercury displacement. However, we observe the jump from position x5 to x6

at temperature T = T2. We mention that, the temperature T2 can be lower or higher than T0.
It depends on the choice of x0, H and k. In this case, x6 can be positive or negative. Finally, if
it is necessary to calculate at which temperature the air in the tube must be heated, so that the
displacement of the mercury has a value in the range x′ < x < x5 without taking into account
the effect of bistability, we could obtain a wrong result.

Finally, we give a physical interpretation of processes that can take place in tube of figure 5
and explain the figure 8 hysteresis. Suppose that, the temperature of air in tube is constant and
somehow forces the mercury column to rise upwards with a very small value of displacement
x. Then both the air pressure in the tube p2 and the pressure of the mercury column p1 will
decrease, since the mercury passes into the tube with the larger section and the height of its
column decreases. However, these decreases in pressure will not be proportional one to other,
but p2 will decrease more than p1. Since the displacement is small the mercury will return to
its equilibrium position. However, for higher values of displacement x it may happen that p2

decreases less than p1. Then the mercury will continue to move away from the equilibrium posi-
tion until all the mercury passes into the tube with the larger section. As the mercury continues
to move to high section tube p1 remains constant, and p2 continues to decrease until these two
pressures equalize each other and a new equilibrium position of mercury is established. Thus,
if the initial temperature of the gas is T0 then with increasing temperature it increases displace-
ment x (see figure 8). At temperature T ′ the mercury passes by jumping from position x′ to x2.
By decreasing the temperature, the processes are repeated in the opposite direction, and the
return of mercury to the tube with the smaller section will take place at another temperature
T2 < T ′.

Finally, we mention that in most textbooks, that explain the phenomenon of optical bistabil-
ity, the hysteresis is described more qualitatively, without a mathematical description. There are
cases when the mathematical description of the hysteresis loop does not even exist for example
the hysteresis loop of the ferroelectrics. At the same time, it is well known that the nature of
superconductivity is not yet fully revealed. However, the red curves in figures 4 and 8 are very
similar to those obtained in the case of superconductivity. In examples proposed for examina-
tion in this paper, two forces compete that lead to the appearance of the bistability effect. On
the other hand, similar examples can appear in the case of superconductivity, where two effects
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may compete as well. Thus, the proposed approach could serve for students as an example of
solving the problems and as an alternative to solve some theoretical problems related to hys-
teresis loops, and phase transitions of different systems. From the mathematical description of
the forces acting in the system (equations (2) and (3)) of section 2 and equations (6) and (7))
of section 3) it is very difficult even sometimes impossible to come to the idea of bistability or
hysteresis. Only the graphical representation (see figures 3 and 7) can lead to the idea of bista-
bility and can serve as a model for trying to explain this effect. Based on graphical method the
students can easily avoid the mistakes solving different problems from fields where nonlinear-
ities and hysteresis are present. Sometimes is happens that, only using graphical method all
solutions of hysteresis can be found either in electromagnetism, optics or other field of student
study.

4. Conclusions

In conclusion, we mention that the graphical method presented in this paper is a very important
tool for understanding the effect of bistability in physical systems. The results presented can be
used to significantly improve the understanding of this phenomenon by undergraduate students,
and for explaining the physical processes that take place. On the other hand, we denote that in
the case of non-linear dependencies between physical quantities, we have to take into account
that the effect of bistability can occur. Thus, to avoid mistakes in solving physics problems it
is necessary to consider this phenomena. We believe that our work provides a good basis for
future, more detailed studies of bistability in physical systems. The presented results may be
used to significantly improve the understanding of phenomenon of bistability by undergraduate
students.

Acknowledgments

Authors acknowledge the support from the Project 20.800 09.5007.08.

ORCID iDs

Vitalie Chistol https://orcid.org/0000-0002-4761-5892
Vasile Tronciu https://orcid.org/0000-0002-9164-2249

References

[1] Gibbs H 1985 Optical Bistability: Controlling Light with Light (New York: Academic) p 484
[2] Kahn O 2013 Magnetism: A Supramolecular Function vol 6 (Berlin: Springer) p 660
[3] Haraoubiais B 2019 Nonlinear Electronics 2: Flip-Flops, ADC, DAC and PLL (Amsterdam: Elsevier)

p 316
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