Please use this identifier to cite or link to this item: http://cris.utm.md/handle/5014/1678
DC FieldValueLanguage
dc.contributor.authorSCHEGOLEV, Andrey E.en_US
dc.contributor.authorKLENOV, Nikolay V.en_US
dc.contributor.authorBAKURSKIY, Sergey V.en_US
dc.contributor.authorSOLOVIEV, Igor I.en_US
dc.contributor.authorKUPRIYANOV, Mikhail Yu.en_US
dc.contributor.authorTERESHONOK, Maxim V.en_US
dc.contributor.authorSIDORENCO, Anatolyen_US
dc.date.accessioned2023-04-15T18:21:13Z-
dc.date.available2023-04-15T18:21:13Z-
dc.date.issued2022-
dc.identifier.citationSchegolev, A. E.; Klenov, N. V.; Bakurskiy, S. V.; Soloviev, I. I.; Kupriyanov, M. Y.; Tereshonok, M. V.; Sidorenko, A. S. Beilstein J. Nanotechnol. 2022, 13, 444–454. doi:10.3762/bjnano.13.37en_US
dc.identifier.urihttps://www.beilstein-journals.org/bjnano/articles/13/37-
dc.identifier.urihttp://cris.utm.md/handle/5014/1678-
dc.description.abstractThe hardware implementation of signal microprocessors based on superconducting technologies seems relevant for a number of niche tasks where performance and energy efficiency are critically important. In this paper, we consider the basic elements for superconducting neural networks on radial basis functions. We examine the static and dynamic activation functions of the proposed neuron. Special attention is paid to tuning the activation functions to a Gaussian form with relatively large amplitude. For the practical implementation of the required tunability, we proposed and investigated heterostructures designed for the implementation of adjustable inductors that consist of superconducting, ferromagnetic, and normal layers.en_US
dc.language.isoenen_US
dc.relation.ispartofBeilstein Journal of Technologyen_US
dc.subjectnetworks on radial basis functionsen_US
dc.subjectJosephson circuitsen_US
dc.subjectradial basis functions (RBFs)en_US
dc.subjectspintronics; superconducting electronicsen_US
dc.subjectsuperconducting neural networken_US
dc.titleTunable superconducting neurons for networks based on radial basis functionsen_US
dc.typeArticleen_US
dc.identifier.doi10.3762/bjnano.13.37-
item.languageiso639-1other-
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:Journal Articles
Files in This Item:
File Description SizeFormat
BJN-Published 18 Mai2022_190-4286-13-37.pdf4.18 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.