Please use this identifier to cite or link to this item:
http://cris.utm.md/handle/5014/1679
DC Field | Value | Language |
---|---|---|
dc.contributor.author | SIDORENCO, Anatoly | en_US |
dc.contributor.author | KLENOV, Nikolay V. | en_US |
dc.contributor.author | SOLOVIEV, Igor I. | en_US |
dc.contributor.author | BAKURSKIY, Sergey V. | en_US |
dc.contributor.author | BOIAN, Vladimir | en_US |
dc.contributor.author | MORARI, Vladimir | en_US |
dc.contributor.author | SAVVA, Yurii | en_US |
dc.contributor.author | LOMAKIN, Arkadii | en_US |
dc.contributor.author | SIDORENKO, Ludmila | en_US |
dc.contributor.author | SIDORENKO, Svetlana | en_US |
dc.contributor.author | SIDORENKO, Irina | en_US |
dc.contributor.author | SEVERYUKHINA, Olesya | en_US |
dc.contributor.author | FEDOTOV, Aleksey | en_US |
dc.contributor.author | SALAMATINA, Anastasia | en_US |
dc.contributor.author | VAKHRUSHEV, Alexander | en_US |
dc.date.accessioned | 2023-04-15T19:38:53Z | - |
dc.date.available | 2023-04-15T19:38:53Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Anatolie Sidorenko, Nikolai Klenov, Igor Soloviev, Sergey Bakurskiy, Vladimir Boian, Roman Morari, Yurii Savva, Arkadii Lomakin, Ludmila Sidorenko, Svetlana Sidorenko, Irina Sidorenko, Olesya Severyukhina, Aleksey Fedotov, Anastasia Salamatina, Alexander Vakhrushev, "Base Elements for Artificial Neural Network: Structure Modeling, Production, Properties," International Journal of Circuits, Systems and Signal Processing, vol. 17, pp. 177-183, 2023 | en_US |
dc.identifier.issn | 10.46300/9106.2023.17.21 | - |
dc.identifier.issn | 1998-4464 | - |
dc.identifier.uri | http://cris.utm.md/handle/5014/1679 | - |
dc.description.abstract | A radical reduction in power consumption is becoming an important task in the development of supercomputers. Artificial neural networks (ANNs) based on superconducting elements of spintronics seem to be the most promising solution. A superconducting ANN needs to develop two basic elements - a nonlinear (neuron) and a linear connecting element (synapse). The theoretical and experimental results of this complex and interdisciplinary problem are presented in this paper. The results of our theoretical and experimental study of the proximity effect in a stacked superconductor/ferromagnet (S/F) superlattice with Co-ferromagnetic layers of various thicknesses and coercive fields and Nb-superconducting layers of constant thickness equal to the coherence length of niobium and some studies using computer simulation of the formation of such multilayer nanostructures and their magnetic properties are presented in this article. | en_US |
dc.language.iso | en | en_US |
dc.relation | 20.80009.5007.11. Nanostructuri și nanomateriale funcționale pentru industrie și agricultură | en_US |
dc.relation.ispartof | Circuits, Systems and Signal Processing | en_US |
dc.subject | Artificial Neural Network | en_US |
dc.subject | Base Elements | en_US |
dc.subject | Modeling | en_US |
dc.subject | Magnetic Properties | en_US |
dc.subject | Structure | en_US |
dc.title | Base Elements for Artificial Neural Network: Structure Modeling, Production, Properties | en_US |
dc.type | Article | en_US |
item.languageiso639-1 | other | - |
item.grantfulltext | open | - |
item.fulltext | With Fulltext | - |
Appears in Collections: | Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Published 03 April 2023_a422005-021(2023).pdf | 1.47 MB | Adobe PDF | View/Open |
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.