Please use this identifier to cite or link to this item: http://cris.utm.md/handle/5014/441
DC FieldValueLanguage
dc.contributor.authorURSU, Vasileen_US
dc.date.accessioned2020-04-28T13:07:35Z-
dc.date.available2020-04-28T13:07:35Z-
dc.date.issued2020-
dc.identifier.citationUrsu, V.I. A Correspondence Between Commutative Rings and Jordan Loops. Algebra Logic 58, 494–513 (2020). https://doi.org/10.1007/s10469-020-09569-wen_US
dc.identifier.issn0002-5232-
dc.identifier.urihttp://cris.utm.md/handle/5014/441-
dc.description.abstractWe show that there is a one-to-one correspondence (up to isomorphism) between commutative rings with unity and metabelian commutative loops belonging to a particular finitely axiomatizable class. Based on this correspondence, it is proved that the sets of identically valid formulas and of finitely refutable formulas of a class of finite nonassociative commutative loops (and of many of its other subclasses) are recursively inseparable. It is also stated that nonassociative commutative free automorphic loops of any nilpotency class have an undecidable elementary theory.en_US
dc.language.isoenen_US
dc.relation.ispartofAlgebra and Logicen_US
dc.subjectcommutative ring with unityen_US
dc.subjectmetabelian commutative loopen_US
dc.subjectfinitely axiomatizable classen_US
dc.subjectundecidability of elementary theoryen_US
dc.subjectrecursively inseparable setsen_US
dc.titleA Correspondence Between Commutative Rings and Jordan Loopsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10469-020-09569-w-
dc.identifier.scopus2-s2.0-85081621217-
item.grantfulltextopen-
item.languageiso639-1other-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Mathematics-
crisitem.author.parentorgFaculty of Mechanical, Industrial Engineering and Transport-
Appears in Collections:Journal Articles
Files in This Item:
File Description SizeFormat
A_Coorespondence_URSU_Vasile.pdf25.3 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.