Please use this identifier to cite or link to this item:
http://cris.utm.md/handle/5014/125
Title: | Low-Temperature Solution Synthesis of Au-Modified ZnO Nanowires for Highly Efficient Hydrogen Nanosensors | Authors: | LUPAN, Oleg POSTICA, Vasile WOLFF, Niklas SU, Jun LABAT, Frederic CIOFINI, Ilaria CAVERS, Heather ADELUNG, Rainer POLONSKYI, Oleksandr FAUPEL, Franz KIENLE, Lorenz VIANA, Bruno PAUPORTÉ, Thierry |
Keywords: | Au-modified ZnO NW;gas sensor;nanosensor;hydrogen;electrochemical deposition | Issue Date: | 6-Aug-2019 | Source: | TY - JOUR AU - Oleg, Lupan AU - Postica, Vasile AU - Wolff, Niklas AU - Jun, Su AU - Labat, Frédéric AU - Ciofini, Ilaria AU - Cavers, Heather AU - Adelung, Rainer AU - Polonskyi, Oleksandr AU - Faupel, Franz AU - Kienle, Lorenz AU - Viana, Bruno AU - Pauporté, Thierry PY - 2019/08/06 SP - T1 - Low-Temperature Solution Synthesis of Au-Modified ZnO Nanowires for Highly Efficient Hydrogen Nanosensors VL - 11 DO - 10.1021/acsami.9b08598 JO - ACS Applied Materials & Interfaces ER - | Journal: | ACS APPLIED MATERIALS & INTERFACES | Abstract: | In this research, the low-temperature single-step electrochemical deposition of arrayed ZnO nanowires (NWs) decorated by Au nanoparticles (NPs) with diameters ranging between 10 and 100 nm is successfully demonstrated for the first time. The AuNPs and ZnO NWs were grown simultaneously in the same growth solution in consideration of the HAuCl4 concentration. Optical, structural, and chemical characterizations were analyzed in detail, proving high crystallinity of the NWs as well as the distribution of Au NPs on the surface of zinc oxide NWs demonstrated by transmission electron microscopy. Individual Au NPs-functionalized ZnO NWs (Au-NP/ZnO-NWs) were incorporated into sensor nanodevices using an focused ion bean/scanning electron microscopy (FIB/SEM) scientific instrument. The gas-sensing investigations demonstrated excellent selectivity to hydrogen gas at room temperature (RT) with a gas response, Igas/Iair, as high as 7.5–100 ppm for Au-NP/ZnO-NWs, possessing a AuNP surface coverage of ∼6.4%. The concentration of HAuCl4 in the electrochemical solution was observed to have no significant impact on the gas-sensing parameters in our experiments. This highlights the significant influence of the total Au/ZnO interfacial area establishing Schottky contacts for the achievement of high performances. The most significant performance of H2 response was observed for gas concentrations higher than 500 ppm of H2 in the environment, which was attributed to the surface metallization of ZnO NWs during exposure to hydrogen. For this case, an ultrahigh response of about 32.9 and 47 to 1000 and 5000 ppm of H2 was obtained, respectively. Spin-polarized periodic density functional theory calculations were realized on Au/ZnO bulk and surface-functionalized models, validating the experimental hypothesis. The combination of H2 gas detection at RT, ultralow power consumption, and reduced dimensions makes these micro-nanodevices excellent candidates for hydrogen gas leakage detection, including hydrogen gas monitoring (less than 1 ppm). |
URI: | http://cris.utm.md/handle/5014/125 | ISSN: | 1944-8244 | DOI: | 10.1021/acsami.9b08598 |
Appears in Collections: | Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Low-temperature-Solution_Synthesis_LUPAN_Oleg.pdf | 96.46 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.