Please use this identifier to cite or link to this item: http://cris.utm.md/handle/5014/258
Title: Can Computers Catch the Authors Style?
Authors: BOBICEV, Victoria 
HLAVCHEVA, Yulia 
KANISHCHEVA, Olga 
Keywords: text classification;authorship attribution;topic classification;machine learning methods;character based learning
Issue Date: 2019
Source: BOBICEV, V.; HLAVCEVA, Y.; KANISHCHEVA, O. Can Computers Catch the Authors Style? In: Proceedings of the 5-th Conference of Mathematical Society of Moldova, IMCS- 2019, September 28-October 1, 2019, Chisinau, Moldova, pp. 293-296, ISBN 978-9975-68- 378-4
Project: Models, methods and interfaces for control and optimization of intelligent manufacturing systems / Modele, metode și interfețe pentru conducerea și optimizarea sistemelor de fabricație inteligente 
Journal: Proceedings of the 5-th Conference of Mathematical Society of Moldova 
Conference: IMCS-2019
Abstract: 
The paper presents the experiments on authorship attribution for scientific articles written in Russian and Ukrainian. The main aim of this research is to explore the topic influence on author classification.
URI: http://cris.utm.md/handle/5014/258
ISBN: 978-9975-68- 378-4
Appears in Collections:Proceedings Papers

Files in This Item:
File Description SizeFormat
293-296_6.pdf526.07 kBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.