Please use this identifier to cite or link to this item:
http://cris.utm.md/handle/5014/373
DC Field | Value | Language |
---|---|---|
dc.contributor.author | CEBOTARU, Elena | en_US |
dc.date.accessioned | 2020-04-12T15:31:06Z | - |
dc.date.available | 2020-04-12T15:31:06Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | CEBOTARU, Elena. Linear stability interval for geometrical parameter of the Newtonian eight bodies problem. In: Proceedings IMCS-55The Fifth Conference of Mathematical Society of the Republic of Moldova. 28 septembrie - 1 octombrie 2019, Chișinău. Chișinău, Republica Moldova: Tipografia Valinex, 2019, pp. 187-190. ISBN 978-9975-68-378-4. | en_US |
dc.identifier.isbn | 978-9975-68-378-4 | - |
dc.identifier.uri | http://cris.utm.md/handle/5014/373 | - |
dc.description.abstract | We consider the Newtonian restricted eight bodies problem with incomplete symmetry. The linear stability of stationary points of this problem are investigated by some numerical methods. For geometric parameter the intervals of stability and instability are found. All relevant and numerical calculations are done with the computer algebra system Mathematica. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Proceedings IMCS-55 2019 | en_US |
dc.subject | Newtonian problem | en_US |
dc.subject | differential equation of motion | en_US |
dc.subject | configuration | en_US |
dc.subject | stationary points | en_US |
dc.subject | linear stability | en_US |
dc.title | Linear stability interval for geometrical parameter of the Newtonian eight bodies problem | en_US |
dc.type | Article | en_US |
dc.relation.conference | Conference of Mathematical Society of the Republic of Moldova | en_US |
item.grantfulltext | open | - |
item.languageiso639-1 | other | - |
item.fulltext | With Fulltext | - |
crisitem.author.dept | Department of Mathematics | - |
crisitem.author.parentorg | Faculty of Mechanical, Industrial Engineering and Transport | - |
Appears in Collections: | Proceedings Papers |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
187-190_12.pdf | 561.02 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.