Please use this identifier to cite or link to this item: http://cris.utm.md/handle/5014/748
DC FieldValueLanguage
dc.contributor.authorCOJUHARI, Elenaen_US
dc.contributor.authorGARDNER, Barryen_US
dc.date.accessioned2021-06-24T10:17:22Z-
dc.date.available2021-06-24T10:17:22Z-
dc.date.issued2018-
dc.identifier.citationCojuhari, E.P., Gardner, B.J. Skew ring extensions and generalized monoid rings. Acta Math. Hungar. 154, 343–361 (2018). https://doi.org/10.1007/s10474-018-0787-xen_US
dc.identifier.urihttp://cris.utm.md/handle/5014/748-
dc.description154 (2) (2018), 343–361en_US
dc.description.abstractA D-structure on a ring A with identity is a family of self-mappings indexed by the elements of a monoid G and subject to a long list of rather natural conditions. The mappings are used to define a generalization of the monoid algebra A[G]. We consider two of the simpler types of D-structure. The first is based on a homomorphism from G to End(A) and leads to a skew monoid ring. We also explore connections between these D-structures and normalizing and subnormalizing extensions. The second type of D-structure considered is built from an endomorphism of A. We use D-structures of this type to characterize rings which can be graded by a cyclic group of order 2.en_US
dc.language.isoenen_US
dc.relation.ispartofActa Mathematica Hungaricaen_US
dc.subjectskew polynomial ringen_US
dc.subjectskew monoid ringen_US
dc.subjectnormalizing extensionen_US
dc.subjectsubnormalizing extension,en_US
dc.subjectgraded ringen_US
dc.subjectalgebraen_US
dc.titleSkew ring extensions and generalized monoid ringsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10474-018-0787-x-
item.languageiso639-1other-
item.grantfulltextopen-
item.fulltextWith Fulltext-
crisitem.author.deptDepartment of Mathematics-
crisitem.author.parentorgFaculty of Mechanical, Industrial Engineering and Transport-
Appears in Collections:Journal Articles
Files in This Item:
File Description SizeFormat
Cojuhari-Gardner2018_Article_SkewRingExtensionsAndGeneraliz.pdf723.67 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.