Please use this identifier to cite or link to this item: http://cris.utm.md/handle/5014/761
Title: Improved Long-Term Stability and Reduced Humidity Effect in Gas Sensing: SiO2 Ultra-Thin Layered ZnO Columnar Films
Authors: POSTICA, Vasile 
LUPAN, Oleg 
GAPEEVA, Anna 
HANSEN, Luka 
KHALEDIALIDUSTI, Rasoul 
MISHRA, Abhishek Kumar 
DREWES, Jonas 
KERSTEN, Holger 
FAUPEL, Franz 
ADELUNG, Rainer 
HANSEN, Sandra 
Keywords: gas sensors;long-term stability;nano-crystalline materials;UV photodetectors;ZnO columnar films
Issue Date: 2021
Source: Postica, V., Lupan, O., Gapeeva, A., Hansen, L., Khaledialidusti, R., Mishra, A. K., Drewes, J., Kersten, H., Faupel, F., Adelung, R., Hansen, S., Improved Long-Term Stability and Reduced Humidity Effect in Gas Sensing: SiO2 Ultra-Thin Layered ZnO Columnar Films. Adv. Mater. Technol. 2021, 6, 2001137. https://doi.org/10.1002/admt.202001137
Project: 20.80009.5007.09. Elaborarea şi lansarea seriei de nanosateliţi cu misiuni de cercetare de pe Staţia Spaţială Internaţională, monitorizarea, postoperarea lor şi promovarea tehnologiilor spaţiale 
Journal: Advanced Materials Technologies
Abstract: 
The undoped and metal-doped zinc oxide columnar films (ZnO:Sn, ZnO:Fe, ZnO:Ag, and ZnO:Cu) are covered with an ultra-thin layer of SiO2 (10–20 nm). The electrical, UV, and volatile organic compounds (VOCs) sensing properties are evaluated under different ambient conditions for ≈7 months to investigate the impact of the top SiO2-layer on the long-term stability of samples. The obtained results show a high immunity of sensing properties of SiO2-coated samples to humidity. Furthermore, gas sensing measurements show that the loss in response after 203 days is significantly lower for coated samples indicating higher stability of sensing performance. For ZnO:Fe the gas response is reduced by about 90% after 203 days, but for SiO2-coated ZnO:Fe columnar films the gas response is slightly reduced by only 38%. The density functional theory (DFT) calculations show that water species bind strongly with the surface SiO2 layer atoms with a −0.129 e− charge transfer, which is, much higher compared to the interaction with ethanol and acetone. Calculations show strong binding of water species on the SiO2 layer indicating preferential absorption of water molecules on SiO2. The obtained results demonstrate an important role of the top SiO2 ultra-thin layer in order to produce humidity-tolerant sensitive devices.
URI: http://cris.utm.md/handle/5014/761
DOI: 10.1002/admt.202001137
Appears in Collections:Journal Articles

Files in This Item:
File Description SizeFormat
admt.202001137.pdf3.36 MBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.